Page 468 - v11i4
P. 468

International Journal of Bioprinting                          Tunable GelMA-based bioinks for keloid modeling




            18.  Kim H, Anggradita LD, Lee SJ, et al. Ameliorating fibrotic   29.  de Barros NR, Gomez A, Ermis M, et al. Gelatin methacryloyl
               phenotypes of keloid dermal fibroblasts through an   and Laponite bioink for 3D bioprinted organotypic tumor
               epidermal growth factor-mediated extracellular matrix   modeling. Biofabrication. 2023;15(4):045005.
               remodeling. Int J Mol Sci. 2021;22(4):2198.        doi: 10.1088/1758-5090/ace0db
               doi: 10.3390/ijms22042198
                                                               30.  Ashammakhi N, Ahadian S, Xu C,  et al. Bioinks and
            19.  Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A,   bioprinting  technologies  to  make  heterogeneous
               Rybka JD, Gornowicz-Porowska J. 3D bioprinting in skin   and biomimetic tissue constructs.  Mater Today Bio.
               related research: recent achievements and application   2019;1:100008.
               perspectives. ACS Synth Biol. 2022;11(1):26-38.    doi: 10.1016/j.mtbio.2019.100008
               doi: 10.1021/acssynbio.1c00547
                                                               31.  Muthuramalingam K, Lee HA-O. Effect of GelMA hydrogel
            20.  Kwon SH, Lee J, Yoo JA-O, Jung YA-O. Artificial keloid skin   properties on long-term encapsulation and myogenic
               models: understanding the pathophysiological mechanisms   differentiation of C(2)C(12) spheroids. Gels. 2023;9(12):925.
               and application in therapeutic studies.  Biomater Sci.      doi: 10.3390/gels9120925.
               2024;25(13):3321-3334.                          32.  Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin-
               doi: 10.1039/d4bm00005
                                                                  alginate composite bioink printability using rheological
            21.  Kang H, Shih Y-RV, Hwang Y,  et al. Mineralized   parameters: a systematic approach.  Biofabrication.
               gelatin methacrylate-based matrices induce osteogenic   2018;10(3):034106.
               differentiation of human induced pluripotent stem cells.   doi:  10.1088/1758-5090/aacdc7.
               Acta Biomater. 2014;10(12):4961-4970.           33.  Moreira R, Chenlo F, Silva C, Torres MD. Rheological
               doi: 10.1016/j.actbio.2014.08.010.
                                                                  behaviour of aqueous methylcellulose systems: effect of
            22.  Temirel M, Dabbagh SR, Tasoglu S. Shape fidelity evaluation   concentration, temperature and presence of tragacanth.
               of alginate-based hydrogels through extrusion-based   LWT. 2017;84:764-770.
               bioprinting. J Funct Biomater. 2022;13(4):225.     doi: 10.1016/j.lwt.2017.06.050
               doi: 10.3390/jfb13040225
                                                               34.  Schütz K, Placht A-M, Paul B, Brüggemeier S, Gelinsky M,
            23.  Livak KJ, Schmittgen TD. Analysis of relative gene   Lode A. Three-dimensional plotting of a cell-laden alginate/
               expression data using real-time quantitative PCR and the   methylcellulose blend: towards biofabrication of tissue
               2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-8.  engineering constructs with clinically relevant dimensions.
               doi: 10.1006/meth.2001.1262. PMID: 11846609.       J Tissue Eng Regen Med. 2017;11(5):1574-1587.
                                                                  doi: 10.1002/term.2058
            24.  Wang K-Y, Jin X-Y, Ma Y-H,  et al. Injectable stress
               relaxation gelatin-based hydrogels with positive surface   35.  Rastin H, Ormsby RT, Atkins GJ, Losic DA-OX. 3D
               charge for adsorption of aggrecan and facile cartilage tissue   bioprinting of methylcellulose/gelatin-methacryloyl (MC/
               regeneration. J Nanobiotechnol. 2021;19(1):214.    GelMA) bioink with high shape integrity.  ACS Appl Bio
               doi: 10.1186/s12951-021-00950-0                    Mater. 2020;3(3):1815-1826.
                                                                  doi: 10.1021/acsabm.0c00169
            25.  Vigata M, Meinert C, Bock N, Dargaville BL, Hutmacher
               DW. Deciphering the molecular mechanism of water   36.  Afghah F, Altunbek M, Dikyol C, Koc B. Preparation and
               interaction with gelatin methacryloyl hydrogels: role of   characterization  of nanoclay-hydrogel  composite  support-
               ionic strength, pH, drug loading and hydrogel network   bath for bioprinting of complex structures.  Sci Rep.
               characteristics. Biomedicines. 2021;9(5):574.      2020;10(1):5257.
               doi: 10.3390/biomedicines9050574                   doi: 10.1038/s41598-020-61606-x
            26.  Xiao S, Zhao T, Wang J,  et al. Gelatin methacrylate   37.  Mignon A, Pezzoli D, Prouvé E,  et al. Combined effect
               (GelMA)-based hydrogels for cell transplantation: an   of laponite and polymer molecular weight on the cell-
               effective strategy for tissue engineering. Stem Cell Rev Rep.   interactive  properties  of  synthetic  PEO-based  hydrogels.
               2019;15(5):664-679.                                React Funct Polym. 2019;136:95-106.
               doi: 10.1007/s12015-019-09893-4.                   doi: 10.1016/j.reactfunctpolym.2018.12.017
            27.  Fang W, Yang M, Wang L, et al. Hydrogels for 3D bioprinting   38.  Aazmi A, Zhang D, Mazzaglia C,  et al. Biofabrication
               in tissue engineering and regenerative medicine: current   methods for reconstructing extracellular matrix mimetics.
               progress and challenges. Int J Bioprint. 2023;9(5):759.  Bioact Mater. 2023;31:475-496.
               doi: 10.18063/ijb.759. PMID: 37457925              doi: 10.1016/j.bioactmat.2023.08.018.
            28.  Stealey ST, Gaharwar AK, Zustiak SP. Laponite-based   39.  GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini
               nanocomposite hydrogels for drug delivery applications.   A. Crosslinking strategies for 3D bioprinting of polymeric
               Pharmaceuticals. 2023;16(6):821.                   hydrogels. Small. 2020;16(35):2002931.
               doi: 10.3390/ph16060821                            doi: 10.1002/smll.202002931



            Volume 11 Issue 4 (2025)                       460                            doi: 10.36922/IJB025160154
   463   464   465   466   467   468   469   470   471   472