Page 468 - v11i4
P. 468
International Journal of Bioprinting Tunable GelMA-based bioinks for keloid modeling
18. Kim H, Anggradita LD, Lee SJ, et al. Ameliorating fibrotic 29. de Barros NR, Gomez A, Ermis M, et al. Gelatin methacryloyl
phenotypes of keloid dermal fibroblasts through an and Laponite bioink for 3D bioprinted organotypic tumor
epidermal growth factor-mediated extracellular matrix modeling. Biofabrication. 2023;15(4):045005.
remodeling. Int J Mol Sci. 2021;22(4):2198. doi: 10.1088/1758-5090/ace0db
doi: 10.3390/ijms22042198
30. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and
19. Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, bioprinting technologies to make heterogeneous
Rybka JD, Gornowicz-Porowska J. 3D bioprinting in skin and biomimetic tissue constructs. Mater Today Bio.
related research: recent achievements and application 2019;1:100008.
perspectives. ACS Synth Biol. 2022;11(1):26-38. doi: 10.1016/j.mtbio.2019.100008
doi: 10.1021/acssynbio.1c00547
31. Muthuramalingam K, Lee HA-O. Effect of GelMA hydrogel
20. Kwon SH, Lee J, Yoo JA-O, Jung YA-O. Artificial keloid skin properties on long-term encapsulation and myogenic
models: understanding the pathophysiological mechanisms differentiation of C(2)C(12) spheroids. Gels. 2023;9(12):925.
and application in therapeutic studies. Biomater Sci. doi: 10.3390/gels9120925.
2024;25(13):3321-3334. 32. Gao T, Gillispie GJ, Copus JS, et al. Optimization of gelatin-
doi: 10.1039/d4bm00005
alginate composite bioink printability using rheological
21. Kang H, Shih Y-RV, Hwang Y, et al. Mineralized parameters: a systematic approach. Biofabrication.
gelatin methacrylate-based matrices induce osteogenic 2018;10(3):034106.
differentiation of human induced pluripotent stem cells. doi: 10.1088/1758-5090/aacdc7.
Acta Biomater. 2014;10(12):4961-4970. 33. Moreira R, Chenlo F, Silva C, Torres MD. Rheological
doi: 10.1016/j.actbio.2014.08.010.
behaviour of aqueous methylcellulose systems: effect of
22. Temirel M, Dabbagh SR, Tasoglu S. Shape fidelity evaluation concentration, temperature and presence of tragacanth.
of alginate-based hydrogels through extrusion-based LWT. 2017;84:764-770.
bioprinting. J Funct Biomater. 2022;13(4):225. doi: 10.1016/j.lwt.2017.06.050
doi: 10.3390/jfb13040225
34. Schütz K, Placht A-M, Paul B, Brüggemeier S, Gelinsky M,
23. Livak KJ, Schmittgen TD. Analysis of relative gene Lode A. Three-dimensional plotting of a cell-laden alginate/
expression data using real-time quantitative PCR and the methylcellulose blend: towards biofabrication of tissue
2(-Delta Delta C(T)) method. Methods. 2001;25(4):402-8. engineering constructs with clinically relevant dimensions.
doi: 10.1006/meth.2001.1262. PMID: 11846609. J Tissue Eng Regen Med. 2017;11(5):1574-1587.
doi: 10.1002/term.2058
24. Wang K-Y, Jin X-Y, Ma Y-H, et al. Injectable stress
relaxation gelatin-based hydrogels with positive surface 35. Rastin H, Ormsby RT, Atkins GJ, Losic DA-OX. 3D
charge for adsorption of aggrecan and facile cartilage tissue bioprinting of methylcellulose/gelatin-methacryloyl (MC/
regeneration. J Nanobiotechnol. 2021;19(1):214. GelMA) bioink with high shape integrity. ACS Appl Bio
doi: 10.1186/s12951-021-00950-0 Mater. 2020;3(3):1815-1826.
doi: 10.1021/acsabm.0c00169
25. Vigata M, Meinert C, Bock N, Dargaville BL, Hutmacher
DW. Deciphering the molecular mechanism of water 36. Afghah F, Altunbek M, Dikyol C, Koc B. Preparation and
interaction with gelatin methacryloyl hydrogels: role of characterization of nanoclay-hydrogel composite support-
ionic strength, pH, drug loading and hydrogel network bath for bioprinting of complex structures. Sci Rep.
characteristics. Biomedicines. 2021;9(5):574. 2020;10(1):5257.
doi: 10.3390/biomedicines9050574 doi: 10.1038/s41598-020-61606-x
26. Xiao S, Zhao T, Wang J, et al. Gelatin methacrylate 37. Mignon A, Pezzoli D, Prouvé E, et al. Combined effect
(GelMA)-based hydrogels for cell transplantation: an of laponite and polymer molecular weight on the cell-
effective strategy for tissue engineering. Stem Cell Rev Rep. interactive properties of synthetic PEO-based hydrogels.
2019;15(5):664-679. React Funct Polym. 2019;136:95-106.
doi: 10.1007/s12015-019-09893-4. doi: 10.1016/j.reactfunctpolym.2018.12.017
27. Fang W, Yang M, Wang L, et al. Hydrogels for 3D bioprinting 38. Aazmi A, Zhang D, Mazzaglia C, et al. Biofabrication
in tissue engineering and regenerative medicine: current methods for reconstructing extracellular matrix mimetics.
progress and challenges. Int J Bioprint. 2023;9(5):759. Bioact Mater. 2023;31:475-496.
doi: 10.18063/ijb.759. PMID: 37457925 doi: 10.1016/j.bioactmat.2023.08.018.
28. Stealey ST, Gaharwar AK, Zustiak SP. Laponite-based 39. GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini
nanocomposite hydrogels for drug delivery applications. A. Crosslinking strategies for 3D bioprinting of polymeric
Pharmaceuticals. 2023;16(6):821. hydrogels. Small. 2020;16(35):2002931.
doi: 10.3390/ph16060821 doi: 10.1002/smll.202002931
Volume 11 Issue 4 (2025) 460 doi: 10.36922/IJB025160154