Page 73 - IJOCTA-15-1
P. 73

BSO: Binary Sailfish Optimization for feature selection in sentiment analysis


                on user preference and location in mobile envi-  [23] Shadravan, S., Naji, H.R., & Bardsiri, V.K.
                ronment. 2016 5th IIAI International Congress on  (2019). The Sailfish Optimizer: A novel nature-
                Advanced Applied Informatics (IIAI-AAI), 55–60.   inspired metaheuristic algorithm for solving con-
            [10] Zeng, Y., Bi, Y., Wang, J., & Lin, Y. (2015).    strained engineering optimization problems. En-
                Collaborative filtering recommendation algorithm  gineering Applications of Artificial Intelligence,
                optimization based on user attributes. 2015 8th   80, 20–34.
                International Symposium on Computational In-  [24] Ahmad, A., Alzaidi, K., Sari, M., & Uslu,
                telligence and Design (ISCID), 1, 580–583.        H. (2023). Prediction of anemia with a particle
            [11] Wang, W., Wang, H.-W., & Meng, Y. (2014).        swarm optimization-based approach. An Interna-
                The collaborative filtering recommendation based  tional Journal of Optimization and Control: The-
                on sentiment analysis of online reviews. Xitong   ories & Applications (IJOCTA), 13(2).
                Gongcheng Lilun yu Shijian/System Engineering  [25] Uzer, M.S., Yilmaz, N., & Inan, O. (2013).
                Theory and Practice.                              Feature selection method based on artificial bee
            [12] Liu, J.-p., Wang, Y., & Yan, F.-h. (2010). An im-  colony algorithm and support vector machines
                proved collaborative filtering recommendation al-  for medical datasets classification. The Scientific
                gorithm. 2010 First International Conference on   World Journal, 2013(1), 419187.
                Networking and Distributed Computing, 194–198.  [26] Peng, H., Ying, C., Tan, S., Hu, B., & Sun, Z.
            [13] Visalakshi, S., & Radha, V. (2014). A literature  (2018). An improved feature selection algorithm
                review of feature selection techniques and applica-  based on ant colony optimization. IEEE Access,
                tions: Review of feature selection in data mining.  6, 69203–69209.
                2014 IEEE International Conference on Com-    [27] Bektur, G., & Aslan, H.K. (2024). Artificial bee
                putational Intelligence and Computing Research,   colony algorithm for operating room scheduling
                1–6.                                              problem with dedicated/flexible resources and co-
            [14] Jovi´c, A., Brki´c, K., & Bogunovi´c, N. (2015).  operative operations. An International Journal of
                A review of feature selection methods with ap-    Optimization and Control: Theories & Applica-
                plications. 2015 38th International Convention    tions (IJOCTA), 14(3), 193–207.
                on Information and Communication Technol-     [28] Selvakumar, B., & Muneeswaran, K. (2019). Fire-
                ogy, Electronics and Microelectronics (MIPRO),    fly algorithm based feature selection for network
                1200–1205.                                        intrusion detection. Computers & Security, 81,
            [15] S´anchez-Maro˜no, N., Alonso-Betanzos, A., &     148–155.
                Tombilla-Sanrom´an, M. (2007). Filter methods  [29] Aghdam, M.H., Ghasem-Aghaee, N., & Basiri,
                for feature selection—a comparative study. In-    M.E. (2009). Text feature selection using ant
                ternational Conference on Intelligent Data Engi-  colony optimization. Expert Systems with Appli-
                neering and Automated Learning, 178–187.          cations, 36(3), 6843–6853.
            [16] El Aboudi, N., & Benhlima, L. (2016). Review  [30] Marie-Sainte, S.L., & Alalyani, N. (2020). Fire-
                on wrapper feature selection approaches. 2016     fly algorithm based feature selection for Ara-
                International Conference on Engineering & MIS     bic text classification. Journal of King Saud
                (ICEMIS), 1–5.                                    University-Computer and Information Sciences,
            [17] Guyon, I., & Elisseeff, A. (2003). An introduc-  32(3), 320–328.
                tion to variable and feature selection. Journal of  [31] Basari, A.S.H., Hussin, B., Ananta, I.G.P., &
                Machine Learning Research, 1157–1182.             Zeniarja, J. (2013). Opinion mining of movie re-
            [18] Karabo˘ga, D., & Akay, B. (2009). A comparative  view using hybrid method of support vector ma-
                study of artificial bee colony algorithm. Applied  chine and particle swarm optimization. Procedia
                Mathematics and Computation, 214(1).              Engineering, 53, 453–462.
            [19] Dorigo, M., Birattari, M., & St¨utzle, T. (2006).  [32] Mitra, S., & Jenamani, M. (2021). Helpfulness of
                Ant colony optimization. IEEE Computational       online consumer reviews: A multi-perspective ap-
                Intelligence Magazine, 1(4), 28–39.               proach. Information Processing & Management,
            [20] Kennedy, J., & Eberhart, R. (1995). Particle     58(3), 102538.
                swarm optimization. Proceedings of ICNN’95-   [33] Liu, D., Li, J., Du, B., Chang, J., Gao, R., &
                International Conference on Neural Networks, 4,   Wu, Y. (2021). A hybrid neural network approach
                1942–1948.                                        to combine textual information and rating infor-
            [21] Fister, I., Fister Jr, I., Yang, X.-S., & Brest,  mation for item recommendation. Knowledge and
                J. (2013). A comprehensive review of firefly al-  Information Systems, 63, 621–646.
                gorithms. Swarm and Evolutionary Computation,  [34] Linden, G., Smith, B., & York, J. (2003). Ama-
                13, 34–46.                                        zon.com recommendations: Item-to-item collabo-
            [22] Mirjalili, S., & Lewis, A. (2016). The whale op-  rative filtering. IEEE Internet Computing, 7(1),
                timization algorithm. Advances in Engineering     76–80.
                Software, 95, 51–67.




                                                            67
   68   69   70   71   72   73   74   75   76   77   78