Page 74 - IJOCTA-15-1
P. 74

O. Ayana, D. F. Kanbak, M. Kaya Keles / IJOCTA, Vol.15, No.1, pp.50-70 (2025)


            [35] Sharma, S.S., & Dutta, G. (2021). SentiDraw:     recommendation. Proceedings of the AAAI con-
                Using star ratings of reviews to develop domain   ference on artificial intelligence, 28(1).
                specific sentiment lexicon for polarity determi-  [50] Zheng, L., Noroozi, V., & Yu, P.S. (2017). Joint
                nation. Information Processing & Management,      deep modeling of users and items using reviews for
                58(1), 102412.                                    recommendation. Proceedings of the tenth ACM
            [36] Nagarajan, S.M., & Gandhi, U.D. (2019). Clas-    international conference on web search and data
                sifying streaming of Twitter data based on sen-   mining, 425–434.
                timent analysis using hybridization. Neural Com-  [51] Chen, C., Zhang, M., Liu, Y., & Ma, S. (2018).
                puting and Applications, 31, 1425–1433.           Neural attentional rating regression with review-
                                              ¨
            [37] Rumelli, M., Akku¸s, D., Kart, O., & I¸sık, Z.   level explanations. Proceedings of the 2018 world
                (2019). Sentiment analysis in Turkish text with   wide web conference, 1583–1592.
                machine learning algorithms. In 2019 Innovations  [52] Sumathi, T., Karthik, S., & Marikkannan, M.
                in Intelligent Systems and Applications Confer-   (2014). Artificial bee colony optimization for fea-
                ence (ASYU), 1–5.                                 ture selection in opinion mining. Journal of Theo-
            [38] Hepsiburada.com. (2023). Hepsiburada.com. On-    retical & Applied Information Technology, 66(1).
                line Alı¸sveri¸s Sitesi [online]. Available from: http  [53] Wahyudi, M., & Kristiyanti, D.A. (2016). Sen-
                s://www.hepsiburada.com/ [Accessed 04-July-       timent Analysis Of Smartphone Product Review
                2023].                                            Using Support Vector Machine Algorithm-Based
            [39] Dehkharghani, R., Saygin, Y., Yanikoglu, B., &   Particle Swarm Optimization. Journal of Theo-
                Oflazer, K. (2016). SentiTurkNet: A Turkish po-   retical & Applied Information Technology, 91(1).
                larity lexicon for sentiment analysis. Language  [54] Yuvaraj, N., & Sabari, A. (2017). Twitter senti-
                Resources and Evaluation, 50, 667–685.            ment classification using binary shuffled frog algo-
            [40] AKIN AA. (2023). Zemberek-NLP [online]. Avail-   rithm. Intelligent Automation & Soft Computing,
                able from: https://github.com/ahmetaa/zem         23(2), 373–381.
                berek-nlp[Accessed 04-July-2023].             [55] Naz, M., Zafar, K., & Khan, A. (2019). Ensem-
            [41] Zhao, H., Liu, Z., Yao, X., & Yang, Q. (2021).   ble based classification of sentiments using forest
                A machine learning-based sentiment analysis of    optimization algorithm. Data, 4(2), 76.
                online product reviews with a novel term weight-  [56] Mustopa, A., Pratama, E. B., Hendini, A., Risdi-
                ing and feature selection approach. Information   ansyah, D., & others. (2020). Analysis of user re-
                Processing & Management, 58(5), 102656.           views for the pedulilindungi application on google
            [42] Demircan, M., Seller, A., Abut, F., & Akay, M.F.  play using the support vector machine and naive
                (2021). Developing Turkish sentiment analysis     bayes algorithm based on particle swarm opti-
                models using machine learning and e-commerce      mization. 2020 Fifth International Conference on
                data. International Journal of Cognitive Comput-  Informatics and Computing (ICIC), 1–7.
                ing in Engineering, 2, 202–207.               [57] Yıldırım, S., Yıldırım, G., & Alatas, B. (2021).
            [43] Basiri, M.E., Nemati, S., Abdar, M., Cambria, E.,  A new plant intelligence-based method for sen-
                & Acharya, U.R. (2021). ABCDM: An attention-      timent analysis: Chaotic sunflower optimization.
                based bidirectional CNN-RNN deep model for        Computer Science, (Special), 35–40.
                sentiment analysis. Future Generation Computer  [58] Kristiyanti, D.A., & Wahyudi, M. (2017). Fea-
                Systems, 115, 279–294.                            ture selection based on Genetic algorithm, parti-
            [44] Li, W., Zhu, L., Shi, Y., Guo, K., & Cambria,    cle swarm optimization and principal component
                E. (2020). User reviews: Sentiment analysis using  analysis for opinion mining cosmetic product re-
                lexicon integrated two-channel CNN–LSTM fam-      view. 2017 5th International Conference on Cyber
                ily models. Applied Soft Computing, 94, 106435.   and IT Service Management (CITSM), 1–6.
            [45] Bilen, B., & Horasan, F. (2021). LSTM network  [59] Ahmad, S.R., & Bakar, A.A. (2019). Ant colony
                based sentiment analysis for customer reviews.    optimization for text feature selection in senti-
                Politeknik Dergisi, 25(3), 959–966.               ment analysis. Intelligent Data Analysis, 23(1),
            [46] Cai, Y., Ke, W., Cui, E., & Yu, F. (2022). A     133–158.
                deep recommendation model of cross-grained sen-  [60] Trendyol. (2023). One Stop Fashion Shop,
                timents of user reviews and ratings. Information  www.trendyol.com. [online]. Available from: http
                Processing & Management, 59(2), 102842.           s://www.trendyol.com [Accessed 04-July-2023].
            [47] Koren, Y., Bell, R., & Volinsky, C. (2009).  [61] n11. (2023). n11 - Online Alı¸sveri¸s Sitesi [online].
                Matrix factorization techniques for recommender   Available from: https://www.n11.com [Accessed
                systems. Computer, 42(8), 30–37.                  04-July-2023].
            [48] Koren, Y. (2008). Factorization meets the neigh-  [62] Fırat University. (2004). Fırat University [online].
                borhood: A multifaceted collaborative filtering   Available from: http://buyukveri.firat.edu.
                model. Proceedings of the 14th ACM SIGKDD         tr/veri-setleri/ [Accessed 04-July-2023].
                international conference on Knowledge discovery  [63] Fairlie, R., & Fossen, F.M. (2021). The early
                and data mining, 426–434.                         impacts of the COVID-19 pandemic on business
            [49] Bao, Y., Fang, H., & Zhang, J. (2014). Topicmf:  sales. Small Business Economics, 1–12.
                Simultaneously exploiting ratings and reviews for
                                                            68
   69   70   71   72   73   74   75   76   77   78   79