Page 75 - IJOCTA-15-1
P. 75

BSO: Binary Sailfish Optimization for feature selection in sentiment analysis


            [64] Sayyida, S., Hartini, S., Gunawan, S., & Husin,  [79] Hammouti, I., Lajjam, A., Merouani, M., &
                S.N. (2021). The impact of the COVID-19 pan-      Tabaa, Y. (2019). A modified sailfish optimizer
                demic on retail consumer behavior. Aptisi Trans-  to solve dynamic berth allocation problem in
                actions on Management (ATM), 5(1), 79–88.         conventional container terminal. International
            [65] Alexandropoulos, S.A.N., Kotsiantis, S.B., &     Journal of Industrial Engineering Computations,
                Vrahatis, M.N. (2019). Data preprocessing in pre-  10(4), 491–504.
                dictive data mining. The Knowledge Engineering  [80] Kumar, B.S., Santhi, S., & Narayana, S. (2022).
                Review, 34, e1.                                   Sailfish optimizer algorithm (SFO) for optimized
            [66] Kumar, V., & Minz, S. (2014). Feature selection:  clustering in wireless sensor network (WSN).
                a literature review. SmartCR, 4(3), 211–229.      Journal of Engineering, Design and Technology,
            [67] Khalid, S., Khalil, T., & Nasreen, S. (2014). A  20(6), 1449–1467.
                survey of feature selection and feature extraction  [81] Li, M., Li, Y., Chen, Y., & Xu, Y. (2021).
                techniques in machine learning. 2014 Science and  Batch recommendation of experts to questions in
                Information Conference, 372–378.                  community-based question-answering with a sail-
            [68] Vijayarani, S., Ilamathi, M.J., & Nithya, M.     fish optimizer. Expert Systems with Applications,
                (2015). Preprocessing techniques for text mining-  169, 114484.
                an overview. International Journal of Computer  [82] Ghosh, K.K., Ahmed, S., Singh, P.K., Geem,
                Science & Communication Networks, 5(1), 7–16.     Z.W.,  & Sarkar,   R. (2020). Improved bi-
            [69] Nayak, A.S., Kanive, A.P., Chandavekar, N.,      nary sailfish optimizer based on adaptive β-hill
                & Balasubramani, R. (2016). Survey on pre-        climbing for feature selection. IEEE Access, 8,
                processing techniques for text mining. Interna-   83548–83560.
                tional Journal of Engineering and Computer Sci-  [83] Siami-Namini, S., Tavakoli, N., & Namin, A.S.
                ence, 5(6), 16875–16879.                          (2019). The performance of LSTM and BiLSTM
            [70] Silva, C., & Ribeiro, B. (2003). The importance  in forecasting time series. Proceedings of the 2019
                of stop word removal on recall values in text cate-  IEEE International Conference on Big Data (Big
                gorization. Proceedings of the International Joint  Data), 3285–3292.
                Conference on Neural Networks, 3, 1661–1666.  [84] Huang, Y., Jiang, Y., Hasan, T., Jiang, Q., &
            [71] Kaur, J., & Buttar, P.K. (2018). A systematic    Li, C. (2018). A topic BiLSTM model for senti-
                review on stopword removal algorithms. Inter-     ment classification. Proceedings of the 2nd Inter-
                national Journal on Future Revolution in Com-     national Conference on Innovation in Artificial
                puter Science & Communication Engineering,        Intelligence, 143–147.
                4(4), 207–210.                                [85] Zhang, Y., & Rao, Z. (2020). n-BiLSTM: BiL-
            [72] Bird, S., Klein, E., & Loper, E. (2009). Natural  STM with n-gram features for text classifica-
                language processing with Python: analyzing text   tion. 2020 IEEE 5th Information Technology and
                with the natural language toolkit. O’Reilly Media,  Mechatronics Engineering Conference (ITOEC),
                Inc.                                              1056–1059.
            [73] Jivani, A.G. (2011). A comparative study of  [86] Hameed, Z., & Garcia-Zapirain, B. (2020). Senti-
                stemming algorithms. International Journal of     ment classification using a single-layered BiLSTM
                Computer Technology and Applications, 2(6),       model. IEEE Access, 8, 73992–74001.
                1930–1938.                                    [87] Dwarampudi, M., & Reddy, N.V. (2019). Effects
            [74] Lovins, J.B. (1968). Development of a stemming   of padding on LSTMs and CNNs. arXiv preprint
                algorithm. Mechanical Translation and Computa-    arXiv:1903.07288.
                tional Linguistics, 11(1-2), 22–31.           [88] Liashchynskyi, P., & Liashchynskyi, P. (2019).
            [75] M.F. Porter. (2001). Snowball: A language for    Grid search, random search, genetic algorithm:
                stemming algorithms [online]. Available from: ht  a big comparison for NAS. arXiv preprint
                tp://snowball.tartarus.org/texts/introd           arXiv:1912.06059.
                uction.html [Accessed 04-July-2023].          [89] Yang,  X.S. (2009). Harmony search as a
            [76] Krovetz, R. (1993). Viewing morphology as an     metaheuristic algorithm. Music-inspired harmony
                inference process. Proceedings of the 16th An-    search algorithm: theory and applications, 1–14.
                nual International ACM SIGIR Conference on    [90] Yang, X.-S. (2010). A new metaheuristic bat-
                Research and Development in Information Re-       inspired algorithm. Nature inspired cooperative
                trieval, 191–202.                                 strategies for optimization (NICSO 2010), 65–74.
            [77] Ramos, J. (2003). Using tf-idf to determine word  [91] Ali, E. (2014). Optimization of power system
                relevance in document queries. Proceedings of     stabilizers using BAT search algorithm. Interna-
                the First Instructional Conference on Machine     tional Journal of Electrical Power & Energy Sys-
                Learning, 242(1), 29–48.                          tems, 61, 683–690.
            [78] Zhang, Y., & Mo, Y. (2021). Dynamic optimiza-  [92] Geem, Z.W., Tseng, C.L., & Park, Y. (2005).
                tion of chemical processes based on modified sail-  Harmony search for generalized orienteering prob-
                fish optimizer combined with an equal division    lem: best touring in China. Proceedings of the In-
                method. Processes, 9(10), 1806.                   ternational Conference on Natural Computation,
                                                                  741–750.
                                                            69
   70   71   72   73   74   75   76   77   78   79   80