Page 80 - IJOCTA-15-1
P. 80

E.M. Rabei et al. / IJOCTA, Vol.15, No.1, pp.71-81 (2025)
                                                              Using the method of separation of variables, let us
                                                            express the wave function ψ β (x i ) as the product
                   β(D s − 1)      β 2   2β   (D s − 2)  β
                              β
            ∂ 2β  +          ∂ +       ∂   +          ∂     of radial and angular components:
              r
                              r
                       r β        r 2β   θ 1       θ β  θ 1
                                               tan  1
                                                    β
                                             
                                                                                   β
                                                                                               β
                   β 2       2β   (D s − 3)  β                       ψ β (x i ) = R β (r )Π N−1 Θ iβ (θ ).  (12)
                                                                                      i=1
             +          β   ∂ θ 2  +   β  ∂ θ 2  
               r 2β  sin 2 θ 1     tan  θ 2
                        β              β                      Substituting this into, eq.(11) and dividing both
                                                    
                                                              sides by ψ β (x i ) we get
                β 2      1          2β   (D s − 4)  β
             +                    ∂  +           ∂    + . . .
               r 2β   2 θ β  2 θ β  θ 3       θ  β  θ 3
                   sin  1  sin  2         tan  3
                        β      β              β
                                                               1   2β      β(D s − 1)  β
                                                                                     r
                                                                   r
                             β 2               2β                ∂ R β +     r β  ∂ R β
             +          β      β         β     ∂ θ N−1        R β                       
               r 2β  sin 2 θ 1  sin 2 θ 2  . . . sin 2  θ N−2      β 2
                        β      β          β                   +         ∂ 2β  +  (D s − 2) β  
                                                                                      ∂
                                                                 2β      θ 1      θ β  θ 1  Θ 1β
                                                                 r Θ 1β             1
                                                                               tan  β
                D s − N   β                                                                   
             +          ∂                                             2
                   θ β   θ N−1                                       β         2β  (D s − 3) β
                tan  N−1                                      +             β   ∂  +     β  ∂    Θ 2β
                     β                                            2β      2 θ   θ 2      θ   θ 2
                                                                 r Θ 2β sin  β 1     tan  β 2
               2m β             β                                                                   
             −      (V β (ˆx β ) − E )ψ β (x i ) = 0.               2
                 2β                                                β         1        2β   (D s − 4) β
                ℏ                                             +                      ∂  +        ∂    Θ 3β
                 β                                               r Θ 3β   2 θ β  2 θ  β  θ 3   θ β  θ 3
                                                                  2β
                                                       (10)            sin  β 1  sin  β 2   tan  β 3
                                                                                     β 2                 2β
            4. Free particle in N-dimensional space           + · · · +             β     β       θ β   ∂ θ N−1
                                                                      2β
                Cartesian coordinates                                r Θ  (N−1)β  sin 2 θ β 1  sin 2 θ β 2  . . . sin 2  N−2
                                                                                                    β
                                                                             
            In this section, we aim to particle in N-            D s − N  β
                                                              +         ∂     Θ (N−1)β
                                                                             
            dimensional space polar coordinates illustrate          θ β  θ N−1
                                                                 tan  N−1
            the Conformable Schr¨odinger Equation in N-               β
            dimensional space by solving it for Free particles.  2m β  β
                                                              +      E ψ β (x i ) = 0.
            For free particles V β (ˆx β ) = 0 the eq.(10) becomes:  ℏ 2β
                                                                  β
                                                                                                         (13)
                         β(D s − 1)  β
              2β
            ∂ ψ β (x i ) +         ∂ ψ β (x i )               Now, all sides of the equation must be constants.
                                    r
              r
                            r β
                                                            Let us denote this constant as λ, the conformable
                β 2   2β   (D s − 2)  β                       radial equation is:
             +      ∂  +          ∂    ψ β (x i )
               r 2β   θ 1       θ β  θ 1
                            tan  1
                                β
                                            
                                                                     1    2β      β(D s − 1)  β
                   β 2      2β   (D s − 3)  β                            ∂ R β +            ∂ R β
                                                                          r
                                                                                             r
             +          β   ∂ θ 2  +  β  ∂ θ 2    ψ β (x i )      R β               r β
               r 2β  sin 2 θ 1    tan  θ 2                                        β       2
                       β               β                                       2m    β   β λ r
                                                                             +     E −        = 0.       (14)
                                                                               2β        2β
                β 2      1         2β   (D s − 4)  β                           ℏ β        r
             +                   ∂   +          ∂    ψ β (x i )
               r 2β  2 θ  β  2 θ β  θ 3      θ β  θ 3
                   sin  1  sin  2        tan  3
                       β      β               β               and the conformable angular part is:
                                  β 2               2β
             + · · · +       β      β        θ β   ∂ θ N−1
                     r 2β  sin 2 θ 1  sin 2 θ 2  . . . sin 2  N−2                               
                             β     β          β                        (D s − 2)
                                                                 ∂   +          ∂  + λ r −         Θ 1β = 0,
                                                                 2β             β          λ 1
                                                                                                
                                                                  θ 1       θ β  θ 1         2 θ β
                D s − N  β                                              tan  β 1          sin  β 1
             +      β   ∂     ψ β (x i )
                             
                   θ     θ N−1                                                                           (15)
                tan  N−1                                      "                                  #
                     β
                                                                 2β    (D s−3) β             λ 2
               2m β                                            ∂    +       β  ∂  + λ 1 −       β  Θ 2β  = 0.
                     β
             +      E ψ β (x i ) = 0.                            θ 2       θ 2  θ 2          2  θ 2
                 2β                                                    tan                 sin
                ℏ                                                          β                   β
                 β                                                                                       (16)
                                                       (11)
                                                                                     .
                                                                                     .
                                                                                     .
                                                            74
   75   76   77   78   79   80   81   82   83   84   85