Page 83 - IJOCTA-15-1
P. 83

Conformable Schr¨odinger equation in D-dimensional space


                        2β    β     β     γ N−2
                  (1 − x    )D     D     T      (x)      (41)      λ r = ℓ(ℓ + D − 3),    ℓ = 0, 1, · · · ,  (47)
                        N−2   x N−2  x N−2 βm N−4
              − 2β(γ N−2 + 1)x  β   D β   T  γ N−2  (x)            λ 1 = m 0 (m 0 + D − 4),              (48)
                                N−2   x N−2 βm N−4
                                                                           m 0 = 0, 1, · · · , m 0 ≤ ℓ,
                   2
              + β m N−4 (m N−4 + 2γ N−2 + 1)T  γ N−2  (x) = 0.
                                               βm N−4
                                                                   λ 2 = m 1 (m 1 + D − 5),              (49)
                                                                           m 1 = 0, 1, · · · , m 1 ≤ m 0
            Taking the conformable derivative of order m N−3 ,
                                                                       .
            for (41), we find                                          . .                               (50)
                                                                λ N−3 = m N−4 (m N−4 + D − N),           (51)
                                                                           m N−4 = 0, 1, · · · , m N−4 ≤ m N−5 ,
                  D m N−3 β [(1 − x 2β  )D β  D β  T  γ N−2  (x)]  λ N−2 = m N−3 (m N−3 + D − N − 1),    (52)
                                N−2    x N−2  x N−2 βm N−4
              − 2β(γ N−2 + 1)D   m N−3 β [x β  D β  T  γ N−2  (x)]         m N−3 = 0, 1, · · · , m N−4 ≤ m N−5 .
                                        N−2   x N−2 βm N−4
                   2
              + β m N−4 (m N−4 + 2γ N−2 + 1)T  γ N−2  (x)     The generalized quantum number n, ℓ, m 1 , m 2 ,
                                               βm N−4
                                                              ..., m N−2 , clearly follows the following quantiza-
              = 0.                                       (42)         5
                                                              tion rule
            after using conformable Leibniz rule, 52  we have
                                                                m N−3 ≤ m N−4 ≤ m N−5 · · · ≤ m 0 ≤ ℓ ≤ n (53)


                                                              4.1. Free particle in N-dimensional space
                  D m N−3 β [(1 − x 2β  )D β  D β  T  γ N−2  (x)]
                                N−2    x N−2  x N−2 βm N−4         Cartesian coordinates
                                      β
                                         β
              = (1 − x  2β  )D m N−3 β D D T  γ N−2  (x)
                        N−2           x  x βm N−4             The time-independent conformable Schr¨odinger
                           β     m N−3 β  β  γ N−2
              − 2m N−3 βx  N−2 D       D T       (x)          equation in N-dimensional space in Cartesian co-
                                         x βm N−4
                                                              ordinates is written as
                                    2
              − m N−3 (m N−3 − 1)β D   m N−3 β T  γ N−2  (x) (43)
                                              βm N−4
                                                                                             α N − 1
                       D m N−3 β [x β  D β  T  γ N−2  (x)] (44)   ∂ 2β  +  ∂ 2β  + · · · + ∂ 2β  + β  ∂ β  (54)
                                 N−2   x N−2 βm N−4                x 1      x 2        x N       β    x N
                                                                                                x N
                    = x  β  D m N−3 β D β  T  γ N−2  (x)                                     !
                         N−2          x N−2 βm N−4                         2m β            β
                    − m N−3 βD  m N−3 β T  γ N−2  (x)                  −     2β  (V β (ˆx β ) − E ) ψ β (x i ) = 0.
                                        βm N−4                              ℏ
                                                                             β
            Substituting eqs(43)and (44) in (42), we have     For free particle after using D s = α N + (N − 1)
                                                              this equation becomes
                            2β    β    β     m N−3 β  γ N−2                                  D s − N
                      (1 − x   )D     D    D      T      (x)       2β        2β         2β             β
                            N−2   x N−2  x N−2     βm N−4         ∂    +   ∂   + · · · + ∂  + β       ∂ (55)
                                                                   x 1      x 2         x N       β    x N
                    β                  β     m N−4 β  γ N−2                                      x
            −   2βx    (m N−4 + γ 1 + 1)D  D      T      (x)                                      N
                    N−2                x N−2       βm N−4                          !
                                   2
            +                     β [m N−4 (m N−4 + 2γ N−2 + 1)        +    2m β  E β  ψ β (x i ) = 0.
                                                                             2β
            −      m N−3 (m N−3 + 2γ N−2 + 1)]D m N−4 β T  γ N−2  (x)       ℏ β
                                                   βm N−4
             =                                            0.
                                                              By employing the separation method ψ β (x i ) =
                                                       (45)
                                                                        β
                                                              Π N  X iβ (x ), we derive
                                                                i=1
            comparing this equation with eq.(40) we find the
            eq.(35) becomes                                     1  2β            1  2β
                                                                  ∂ X 1β   +       ∂ X 2β + . . .
                                                                   x 1              x 2
                                                              X 1β             X 2β
                                                                                    "                            #
                                                                                 1                D s − N
                                   m                                       +          ∂ 2β  X Nβ + β     ∂ β
                              2β    N−3   m N−3 β  γ N−2                                             β       X Nβ
              X β(N−2)  = (1 − x N−2 )  2  D    T βm N−4 (x)                   X Nβ    x N          x N    x N
                                                       (46)                    2m β
                                                                           +        (E β  + E β  + · · · + E β  ) = 0.(56)
                                                                                 2β   x 1   x 2         x N
                                                                                ℏ
                                                                                 β
            the separations constants take the values, 48     Thus, we obtain
                                                            77
   78   79   80   81   82   83   84   85   86   87   88