Page 82 - IJOCTA-15-1
P. 82

E.M. Rabei et al. / IJOCTA, Vol.15, No.1, pp.71-81 (2025)
            We find the eigenvalue λ N−2 = m N−3 (m N−3 +
            D s − N − 1) where γ N−1 =  D s−N−2  and the so-      β                    2β  m N−3  β
                                           2                    D X  β(N−2)   = (1 − x )    2  D u
                                                                                                 x 1 (N−2)β
            lution of eq.(18) is given by                         x 1                               m N−3
                                                                                                 2β
                                                                                          β
                                                                              − m N−3 βx (1 − x )     2  −1
                                     γ N−1
                         X β(N−1)  = T     (x).        (32)                   × u  (N−2)β ,              (36)
                                     βm N−3
            Where T  γ N−1  (x) is the Conformable Gegenbauer  and
                    βm N−3
            polynomials. 51
                                                                    D β   D β   X β(N−2)                    (37)
                                                                     x N−2  x N−2
            Now, let us solve eq.(17) by using the change of             2β   m N−3  β     β
                                                                = (1 − x     )  2  D     D      u
            variable:                                                    N−2         x N−2  x N−2 (N−2)β
                                                                                            m
                                                                             β         2β    N−3  −1  β
                                                                − 2m N−3 βx      (1 − x   )  2     D     u
                                                                             N−2       N−2          x N−2 (N−2)β
                   X β(N−2)  = Θ   β(N−2) ,                     − m N−3 β (1 − x 2β  )  m N−3  −1 u (N−2)β
                                                                           2
                                                                                        2
                                     θ β                                         N−2
                        β             N−2                                             2 2β
                      x      = cos        ,                     + m N−3 (m N−3 − 2)β x  N−2
                        N−2           β                                       m N−3
                                         β                      × (1 − x 2β  )  2  −2 u (N−2)β ,
                                   1    θ                                N−2
                       β                 N−2   β
                      ∂      = −     sin     ∂     ,                                                  2β
                       θ N−2                  x N−2           after multiplying this equation by (1 − x ), we
                                   β      β
                                          β                   find
                                  1     θ
                       2β              2  N−2  2β
                      ∂      =      sin       ∂    ,
                                 β        β                              2β     β   β
                       θ N−2       2           x N−2
                                       2β                           (1 − x N−2 )D D     X β(N−2)          (38)
                                 (1 − x    )                                    x 1  x N−2
                      ∂ 2β   =         N−2  ∂ 2β  .                      2β   m N−3  +1  β   β
                                                                                                  u
                       θ N−2         β 2     x N−2              = (1 − x N−2 )  2    D x N−2 D x N−2 (N−2)β
                                                                                            m
                                                                             β         2β    N−3  β
                                                                − 2m N−3 βx      (1 − x   )  2  D x N−2 (N−2)β
                                                                                                       u
            Thus, eq.(17) becomes                                            N−2       N−2
                                                                                      m N−3
                                                                                 2β
                                                                           2
                                                                − m N−3 β (1 − x     )  2  u (N−2)β
                                                                                 N−2
                     h
                           2β    2β                    β                              2 2β
                      (1 − x   )∂     − β(D s − N + 1)∂         + m N−3 (m N−3 − 2)β x
                           N−2   x N−2                 x N−2                            N−2
                                                                              m
                                              #                          2β     N−3  −1
                        m N−3 (m N−3 + 2γ N−2 )                 × (1 − x N−2 )  2    u (N−2)β .
            +   λ N−3 −            2β          X β(N−2)  = 0.
                              1 − x
                                   N−2
                                                       (33)   Substituting eqs.(35),(36), and (38) in (33) and
                                                                                      m
                                                                                  2β
                                                              multiplying by (1 − x ) 2 , we have
            where γ N−2 = γ N−1 +  1  =  D s−N−1 . To calculate
                                  2       2
            the eigenvalue λ N−3 let m N−3 = 0. Thus, this          (1 − x 2β  )D β  D β  u                  (39)
            equation becomes                                             N−2    x N−2  x N−2 (N−2)β
                                                                             β     β                    2
                                                                − 2m N−3 βx      D     u       − m N−3 β u
                                                                             N−2   x N−2 (N−2)β           (N−2)β
                               2β    2β                                               2 2β        2β  −1
                         (1 − x   )∂     X             (34)     + m N−3 (m N−3 − 2)β x      (1 − x   )   u
                               N−2  x N−2  β(N−2)                                       N−2       N−2     (N−2)β
                     − β(D s − N + 1)∂  β   X                   − 2βx  β   (γ N−2 + 1)D β   u
                                        x N−2  β(N−2)                  N−2             x N−2 (N−2)β
                     + λ N−3 X  β(N−2)  = 0.                    + 2β(γ N−2 + 1)m N−3 βx  2β  (1 − x 2β  ) −1 u
                                                                                         N−2      N−2     (N−2)β
                                                                     2
                                                                + β [m N−4 (m N−4 + 2γ N−2 + 1)
            Again comparing this equation with the Con-             m N−3 (m N−3 + 2γ N−2 )  #
            formable Gegenbauer equation, 51  we obtain         −                           u (N−2)β .
                                                                           1 − x 2β
                                                                                N−2
                  λ N−3 = m N−4 (m N−4 + 2γ N−2 + 1)          Thus, we arrived to
                         = m N−4 (m N−4 + D s − N).
                                                                          2β     β     β
                                                                    (1 − x    )D     D     u
                                                                          N−2    x N−2  x N−2 (N−2)β
                                                                        β                       β
                                                                                                     u
            To solve eq.(33) we suppose                          − 2βx  N−2 (m N−4 + γ N−2 + 1)D x N−2 (N−2)β
                                                                      2
                                                                 + β [m N−4 (m N−4 + 2γ N−2 + 1)         (40)
                                      m
                                 2β    N−3
                 X β(N−2)  = (1 − x N−2 )  2  u (N−2)β ,  (35)   − m N−3 (m N−3 + 2γ N−2 + 1)]u (N−2)β  = 0.
            where                                             The Conformable Gegenbauer equation reads as 51
                                                            76
   77   78   79   80   81   82   83   84   85   86   87