Page 85 - IJOCTA-15-1
P. 85

Conformable Schr¨odinger equation in D-dimensional space
            case D ≤ 3 and β ≤ 1. For D is an integer and      [8] Sylvere, A. S., David, V., Justin, M., Joseph, M.,
            β = 1, we arrive at the same results as in the        Betchewe, G., & Inc, M. (2023). Modulational in-
            traditional solutions.                                stability in lossless left-handed metamaterials in
                                                                  nonlinear Schr¨odinger equation with non-integer
            Acknowledgments                                       dimensional space. Modern Physics Letters B,
                                                                  37(11), 2350002. https://doi.org/10.1142/
            None.                                                 S0217984923500021
                                                               [9] Awoga, O. A., & Ikot, A. N. (2012). Approximate
            Funding                                               solution of Schr¨odinger equation in D dimensions
                                                                  for inverted generalized hyperbolic potential. Pra-
            None.                                                 mana, 79, 345–356. https://doi.org/10.1007/
                                                                  s12043-012-0328-z
            Conflict of interest                              [10] Pe˜na, J. J., Garc´ıa-Mart´ınez, J., Garc´ıa-Ravelo,
                                                                  J., & Morales, J. (2015). Bound state solu-
            The authors declare that they have no conflict of
                                                                  tions of D-dimensional schr¨odinger equation with
            interest regarding the publication of this article.
                                                                  exponential-type potentials. International Jour-
                                                                  nal of Quantum Chemistry, 115(3), 158-164. ht
            Author contributions
                                                                  tps://doi.org/10.1002/qua.24803
                                                              [11] El-Nabulsi, R. A. (2021). Quantum dynamics in
            Conceptualization: All authors
                                                                  low-dimensional systems with position-dependent
            Formal analysis: All authors
                                                                  mass and product-like fractal geometry. Phys-
            Methodology: All authors
                                                                  ica E: Low-Dimensional Systems and Nanostruc-
            Writing – original draft: All authors
                                                                  tures, 134, 114827. https://doi.org/10.1016/
            Writing – review & editing: All authors               j.physe.2021.114827
                                                              [12] Fisher, M. E. (1974). The renormalization group
            Availability of data                                  in the theory of critical behavior. Reviews of Mod-
                                                                  ern Physics, 46(4), 597. https://doi.org/10.1
            Not applicable.
                                                                  103/RevModPhys.46.597
                                                              [13] Mandelbrot, B. B. (1989). Fractal geometry:
            References
                                                                  what is it, and what does it do?. Proceedings
             [1] Mandelbrot, B.B, (1983). The Fractal Geometry    of the Royal Society of London. A. Mathematical
                of Nature/Ed. WH Freeman. New York.               and Physical Sciences, 424(1864), 3–16. https:
             [2] He, X-F. (1990). Anisotropy and isotropy: A      //doi.org/10.1098/rspa.1989.0038
                model of fraction-dimensional space. Solid State  [14] Sun,  J.  (2023).  Fractal  modification  of
                Communications, 75(2), 111-114. https://doi.      Schr¨odinger equation and its fractal variational
                org/10.1016/0038-1098(90)90352-C                  principle. Thermal Science, 27(3 Part A). 2029–
             [3] He, X-F. (1990). Fractional dimensionality and   2037. https://doi.org/10.2298/TSCI2303029S
                fractional derivative spectra of interband optical  [15] El-Nabulsi, R. A., & Anukool, W. (2021). Quan-
                transitions. Physical Review B, 42(18), 11751. ht  tum dots and cuboid quantum wells in fractal
                tps://doi.org/10.1103/PhysRevB.42.11751           dimensions with position-dependent masses. Ap-
             [4] Muslih, S. I. & Baleanu, D. (2007). Fractional   plied Physics A, 127, 1–15. https://doi.org/10
                multipoles in fractional space. Nonlinear Analy-  .1007/s00339-021-04989-6
                sis: Real World Applications, 8(1), 198-203. http  [16] Matos-Abiague, A., Oliveira, L. E., & de Dios-
                s://doi.org/10.1016/j.nonrwa.2005.07.001          Leyva, M. (1998). Fractional-dimensional ap-
             [5] Sadallah, M., & Muslih, S. I. (2009).Solution of  proach for excitons in G a A s- G a 1- x Al x As
                the equations of motion for Einstein’s field in frac-  quantum wells. Physical Review B, 58(7), 4072.
                tional D dimensional space-time. International  [17] Reyes-G´omez, E., Matos-Abiague, A., Perdomo-
                Journal of Theoretical Physics, 48, 3312–3318. ht  Leiva, C. A., de Dios-Leyva, M., & Oliveira, L. E.
                tps://doi.org/10.1007/s10773-009-0133-8           (2000). Excitons and shallow impurities in G a A
             [6] Ahmad, S., Zubair, M., & Younis, U. (2022). Cap-  s- G a 1- x Al x As semiconductor heterostruc-
                turing of non-hydrogenic Rydberg series of ex-    tures within a fractional-dimensional space ap-
                citon binding energy in two-dimensional mono-     proach: Magnetic-field effects. Physical Review B,
                layer WS2 using a modified Coulomb potential in   61(19), 13104.
                fractional space. Physica Scripta, 98(1), 015106.  [18] Jarlskog, C., & Yndur´ain, F.J. (1986). Is the num-
                https://doi.org/10.1088/1402-4896/acaa6a          ber of spatial dimensions an integer?. Europhysics
             [7] Khan, S., Khan, F. M. A., Gulalai, & Noor, A.    Letters, 1(2), 51. https://doi.org/10.1209/02
                (2023). General solution for electromagnetic wave  95-5075/1/2/002
                propagation in cylindrical waveguide filled with  [19] Schafer, A., & Muller, B. (1986). Bounds for the
                fractional space . Waves in Random and Com-       fractal dimension of space. Journal of Physics A:
                plex Media, 33(1), 49–61. https://doi.org/10      Mathematical and General, 19(18), 3891. https:
                .1080/17455030.2021.1874076                       //doi.org/10.1088/0305-4470/19/18/034
                                                            79
   80   81   82   83   84   85   86   87   88   89   90