Page 86 - IJOCTA-15-1
P. 86

E.M. Rabei et al. / IJOCTA, Vol.15, No.1, pp.71-81 (2025)

            [20] Weisskopf, V. F. (1939). On the self-energy and  [33] Al-Masaeed, M., Rabei, E. M.,& Al-Jamel, A.
                the electromagnetic field of the electron. Physical  (2022). Extension of the variational method to
                Review, 56(1), 72. https://doi.org/10.1103/       conformable quantum mechanics. Mathematical
                PhysRev.56.72                                     Methods in the Applied Sciences, 45(5), 2910–
            [21] Matos-Abiague, A.(2001). Deformation of quan-    2920. https://doi.org/10.1002/mma.7963
                tum mechanics in fractional-dimensional space.  [34] Al-Masaeed, M. G., Rabei, E. M., & Al-Jamel,
                Journal of Physics A: Mathematical and General,   A. (2024). Analytical Solution of Conformable
                34(49), 11059. https://doi.org/10.1088/0305       Schr¨odinger Wave Equation with Coulomb Po-
                -4470/34/49/321                                   tential. Progress in Fractional Differentiation and
            [22] Oldham, K., & Spanier, J. (1974).  Elsevier.     Applications, 10, 137–147.
                The fractional calculus theory and applications  [35] Al-Masaeed, M., Rabei, E. M., Al-Jamel, A.,
                of differentiation and integration to arbitrary or-  & Baleanu, D. (2021). Extension of perturba-
                der.London.                                       tion theory to quantum systems with conformable
            [23] Prajapati, J. C., Patel, A. D., Pathak, K. N.,   derivative. Modern Physics Letters A, 36(32),
                & Shukla, A. K. (2012). Fractional calculus ap-   2150228. https://doi.org/10.1142/S02177
                proach in the study of instability phenomenon in  3232150228X
                fluid dynamics. Palestine Journal of Mathemat-  [36] Al-Masaeed, M., Rabei, E. M., & Al-Jamel, A.
                ics, 1(2), 95–103.                                (2022). Wkb approximation with conformable
            [24] Caputo, M. (1967). Linear models of dissipation  operator. Modern Physics Letters A, 37(22),
                whose Q is almost frequency independent-II. Geo-  2250144. https://doi.org/10.1142/S02177
                physical Journal International, 13(5), 529–539.   32322501449
                https://doi.org/10.1111/j.1365-246X.19        [37] Hammad, M. M., Yaqut, A. S., Abdel-Khalek,
                67.tb02303.x                                      M. A., & Doma, S. B. (2021). Analytical
            [25] Grunwald, A. K. (1867). Uber” begrente” Deriva-  study of conformable fractional Bohr Hamilton-
                tionen und deren Anwedung. Zangew Math und        ian with Kratzer potential. Nuclear Physics A,
                Phys, 12, 441–480.                                1015, 122307. https://doi.org/10.1016/j.nu
            [26] Riesz,  M. (1939). L’int´egrale de Riemann-      clphysa.2021.122307
                Liouville et le probl´eme de Cauchy pour      [38] Hammad, M. M. (2021). On the conformable
                l’´equation des ondes. Bulletin de la Soci´et´e   fractional E(5) critical point symmetry. Nuclear
                Math´ematique de France, 67, 153–170. https:      Physics A, 1011, 122203. https://doi.org/10
                //doi.org/10.24033/bsmf.1309                      .1016/j.nuclphysa.2021.122203
            [27] Weyl, H. (1917). Bemerkungen zum begriff     [39] Sher, M., Khan, A., Shah, K., & Abdeljawad,
                des differentialquotienten gebrochener ordnung.   T. (2023). Existence and stability theory of pan-
                Vierteljschr.  Naturforsch.  Gesellsch.  Zurich,  tograph conformable fractional differential prob-
                62(1-2),296–302.                                  lem. Thermal Science, 27(Spec. issue 1), 237–244.
            [28] Jarad, F., Abdeljawad, T., & Baleanu, D.         https://doi.org/10.2298/TSCI23S1237S
                (2012). On Riesz-Caputo Formulation for Sequen-  [40] Koyunbakan, H., Shah, K., & Abdeljawad, T.
                tial Fractional Variational Principles. Abstract  (2023). Well-posedness of inverse Sturm–Liouville
                and Applied Analysis, 2012(1),890396. https:      problem with fractional derivative. Qualitative
                //doi.org/10.1155/2012/890396                     Theory of Dynamical Systems, 22(1), 23. https:
            [29] Khalil, R., Al Horani, M., Yousef, A.,& Sabab-   //doi.org/10.1007/s12346-022-00727-2
                heh, M. (2014). A new definition of fractional de-  [41] Sher, M., Khan, A., Shah, K., Sarwar, M.,
                rivative. Journal of Computational and Applied    Alqudah, M. A., & Abdeljawad, T. (2023). Math-
                Mathematics, 264, 65–70. https://doi.org/10       ematical analysis of fractional order alcoholism
                .1016/j.cam.2014.01.002                           model. Alexandria Engineering Journal, 78, 281–
            [30] Abdeljawad, T. (2015). On conformable fractional  291. https://doi.org/10.1016/j.aej.2023.0
                calculus. Journal of computational and Applied    7.010
                Mathematics, 279, 57–66. https://doi.org/10   [42] Eiman., Shah, K., Hleili, M., & Abdeljawad, T.
                .1016/j.cam.2014.10.016                           (2024). Two strains model of infectious diseases
            [31] Atangana, A., Baleanu, D., & Alsaedi, A. (2015).  for mathematical analysis and simulations. Math-
                New properties of conformable derivative. Open    ematical and Computer Modelling of Dynamical
                Mathematics, 13(1), 000010151520150081. http      Systems, 30(1), 477–495. https://doi.org/10
                s://doi.org/10.1515/math-2015-0081                .1080/13873954.2024.2355940
            [32] Chung, W. S., Zare, S., Hassanabadi, H., &   [43] Khan, S. (2024). Existence theory and stability
                Maghsoodi, E. (2020). The effect of fractional cal-  analysis to a class of hybrid differential equa-
                culus on the formation of quantum-mechanical      tions using confirmable fractal fractional deriva-
                operators. Mathematical Methods in the Applied    tive. Journal of Fractional Calculus and Nonlin-
                Sciences, 43(11), 6950–6967. https://doi.org/     ear Systems, 5(1), 1-11. https://doi.org/10.4
                10.1002/mma.6445                                  8185/jfcns.v5i1.1103



                                                            80
   81   82   83   84   85   86   87   88   89   90   91