Page 79 - IJOCTA-15-1
P. 79

Conformable Schr¨odinger equation in D-dimensional space

                       q                                                                                   
                   β
                  r =    x 2β  + x 2β  + · · · + x 2β  + x 2β                            2
                           1     2          N−1    N            2β   2β   β(D s − 1)  β  β   2β   (D s − 2) β
                                                              ∇   = ∂  +           ∂ +      ∂  +        ∂  
                                                                D    r       r β    r  r 2β  θ 1      θ β  θ 1
                                                                                                   tan  1
                β                                                                                     β
               θ                         x 1                                                  
                1                                        ,               2
                β  = arccos q  2β   2β         2β      2β              β        2β  (D s − 3) β
                             x   + x   + · · · + x  + x           +           ∂  +         ∂  
                              1     2          N−1     N                  2 θ  β  θ 2    θ β  θ 2
                                                                    r 2β  sin  1     tan  2
                β                                                          β             β
               θ                      x 2                                                           
                2                                  ,                  2
                β  = arccos q  2β        2β      2β                 β        1        2β   (D s − 4) β
                             x   + · · · + x  + x                 +                  ∂  +        ∂    + . . .
                              2          N−1     N                  r 2β  2 θ β  2 θ  β  θ 3   θ β  θ 3
                                                                       sin  1  sin  2       tan  3
                β                                                          β      β            β
               θ                      x 3
                3                                  ,                            β 2             2β
                β  = arccos q  2β        2β      2β               +         β     β        β   ∂ θ N−1
                             x   + · · · + x  + x                         2 θ   2 θ     2  θ
                              3          N−1     N                  r 2β  sin  1  sin  2  . . . sin  N−2
                                                                           β     β         β
                  · · ·                                                          
              β                                                      D s − N  β  
             θ                                                    +         ∂
              N−2                  x N−2                                θ β  θ N−1  
                  = arccos q                    ,                   tan  N−1
              β               2β      2β      2β                         β
                             x     + x    + x
                              N−2     N−1     N                                                           (6)
              β
             θ
              N−1              x N−1
                  = arccos q            .
              β               2β      2β
                             x     + x
                              N−1     N
                                                        (3)
                                                              3. Conformable Schr¨odinger equation
            Considering the scalar Laplacian operator in N-      in N-dimensional
            Dimensional as suggested in Ref, 48  and utilizing
            the conformable gradient and conformable scalar   In this section, our objective is to derive
            Laplacian operator in 3-D as employed in. 31,34  We  the Conformable Schr¨odinger Equation in N-
            can express the Conformable scalar Laplacian op-  Dimensional space.   The time-dependent Con-
            erator in N-Dimensional as                        formable Schr¨odinger equation in 3-D is given
                                                              by 32
                              N        α i − 1
                             X
                                               β
                       ∇ 2β  =   ∂ 2β  +     ∂ .        (4)
                         D        x i     β   x i
                                         x                                         !
                              i=1         i                        2β
                                          β                       ℏ β                             β  β
                                                                −     ∇ 2β  + V β (ˆx β ) Ψ β (x i , t) = iℏ D Ψ β (x i , t).
            Let us analyze the conformable Schr¨odinger equa-     2m β                            β  t
            tion for any N, denoted by eq(4).
                                                                                                          (7)
                                                              In a stationary state 32  when
                                        α 1 − 1
                  2β             2β            β     2β                                               β
                ∇ ψ x i ) =     ∂   + β       ∂  + ∂                                           −  i  E β t
                  D  (           x 1       β   x 1   x 2                                          β   β
                                                                                   β
                                         x                    Ψ β (x i , t) = ψ β (x i )T β (t ) = ψ β (x i )e  ℏ β  .
                                           1
                                α 2 − 1  β         2β         So,
                           +   β   β   ∂ x 2  + · · · + ∂ x N
                                  x
                                   2
                                           !
                                                                                           !
                                α N − 1  β                               2m β
                                                                                         β
                           +   β   β   ∂ x N  ψ x i )             ∇ 2β  −    (V β (ˆx β ) − E ) ψ β (x i ) = 0.  (8)
                                              (
                                  x                                      ℏ 2β
                                   N                                      β
            Choosing α N as the single parameter for the non-
                                                              This equation represents the time-independent
            integer dimensions with α 1 = α 2 = · · · = α N−1 =                                        32
            1, D s = α N + (N − 1). In this case, equation (10)  Conformable Schr¨odinger equation in 3-D.  To
            can be expressed as form                          generalize of conformable Schr¨odinger equation to
                                                              N-Dimensions, we obtain

                   2β             2β    2β         2β
                 ∇ ψ x i ) =     ∂   + ∂   + · · · + ∂  (5)
                   D  (           x 1   x 2        x N                                     !
                                            !                       2β   2m β            β
                                 α N − 1  β                       ∇ D  −     (V β (ˆx β ) − E ) ψ β (x i ) = 0.  (9)
                            +   β    β  ∂ x N  ψ x i )                   ℏ 2β
                                                (
                                   x                                      β
                                     N
            After performing the calculations, we obtain      After substituting eq.(6), we have
                                                            73
   74   75   76   77   78   79   80   81   82   83   84