Page 93 - IJOCTA-15-1
P. 93

Existence of mild solution for fuzzy fractional differential equation utilizing the Hilfer-Katugampola . . .
            Therefore, Ξ is bounded and Ξex ∈ B r .              
  ϱ   1−µ    t ϱ      t ϱ   1−µ
                                                                  
 t
                                                                ≤  
  2     R τ,ω  2  e x 0 −  1
                                                                  
   ϱ            ϱ         ϱ
            Step-2:                                                      t ϱ

                                                                  × R τ,ω  1  e x 0
            Now, we show that Ξ is continuous. Let {ex i } ⊂              ϱ
            B r such that ex m → ex ∈ B r as i → ∞.              
 Z     ϱ   1−µ   ϱ  ϱ   ω−1
                                                                 
   t 2  t 2     t − s       ϱ−1
                                                                                  2
            From hypotheses (H2) and (H4), we can write,       + 
       ϱ          ϱ        s

                                                                    t 1
            ∀t ∈ U,                                                      ϱ
                                                                         t − s ϱ
                                                                          2
                                                                  × H ω          F(s)ds
                                                                           ϱ
                 ∥F(t, ex i (t))∥ → ∥F(t, ex(t))∥ as i → ∞,
                                                                 
 Z     ϱ   1−µ   ϱ  ϱ   ω−1    ϱ   1−µ
                                                                     t 1  t        t − s           t
                                                                 
         2       2                1
            and                                                + 
                             −
                                                                 
        ϱ          ϱ             ϱ
                                                                    0
                                                                      ϱ   ϱ   ω−1        ϱ   ϱ
                                                                      t − s         ϱ−1     t − s
                                                                       1
                                                                                            2
               ∥F(t, ex i (t)) − F(t, ex(t))∥ ≤ 2m(t)  ∀i ∈ N.    ×                s   H ω          F(s)ds
                                                                        ϱ                     ϱ
            By Lebesgue dominated convergence theorem, for       
 Z  t 1    ϱ   1−µ   ϱ  ϱ   ω−1
                                                                 
       t 1      t − s       ϱ−1
                                                                                  1
            any t ∈ U,                                         + 
                           s
                                                                 
       ϱ          ϱ
                                                                    0
                                                                         ϱ   ϱ         ϱ   ϱ
                                                                          t − s           t − s
                                                                           2
                                                                                           1
                                                                  × H ω            − H ω           F(s)ds
                                                                             ϱ              ϱ
             ∥Ξex i (t) − Ξex(t)∥ C τ,ω
                    ϱ   1−µ
                    t                                             ∥Ξex(t 2 ) − Ξex(t 1 )∥ C τ,ω  ≤ J + I 1 + I 2 + I 3 .
            ≤ sup
               t∈U  ϱ                                         J is automatically tends to 0.
                    t   ϱ    ϱ               ϱ    ϱ                   t 2               ϱ
                 
 Z          ω−1                             
 Z     ϱ   1−µ    ϱ   ω−1
                                                                                   2
                 
     t − s                t − s                 
       t 2     t − s        ϱ−1
               ×  
                s ϱ−1  H ω       F i (s)ds  I 1 = 
                        s
                 
        ϱ                    ϱ                  
       ϱ          ϱ
                   0                                                 t 1
                   t  t − s ϱ             t − s ϱ                         t − s
                       ϱ
                                           ϱ
                 Z          ω−1                      
                ϱ   ϱ
               −                 s ϱ−1  H ω        F(s)ds 
        × H ω   2      F(s)ds ,


                  0     ϱ                    ϱ           
                  ϱ
                                                                                    ϱ
                 L 1 t ϱ(1−µ)  Z  t                               
 Z  t 1   t ϱ 2   1−µ  t − s ϱ   ω−1   t ϱ   1−µ
                                                                                    2
                                 ϱ
                                                                                                    1
                                     ϱ ω−1 ϱ−1

            ≤                  (t − s )    s                  I 2 = 
                           −
              ϱ 1−µ ω−1 Γ(ω)  0                                   
  0     ϱ          ϱ             ϱ
                   ϱ
                                                                                             ϱ
                                                                       ϱ
               × ∥F(s, ex i (s)) − F(s, ex(s))∥ds                     t − s ϱ   ω−1      t − s ϱ

                                                                   ×   1           s ϱ−1 H ω  2      F(s)ds ,

               L 1 u ϱ(1−µ)  Z  t  ϱ  ϱ ω−1 ϱ−1                          ϱ                     ϱ
            ≤                (t − s )    s                        
 Z     ϱ   1−µ    ϱ   ω−1
              ϱ τ(ω−1) Γ(ω)  0                                    
   t 1  t 1    t − s ϱ      ϱ−1
                                                                                   1
                                                              I 3 = 
                         s
               × ∥F(s, ex i (s)) − F(s, ex(s))∥ds.                
  0    ϱ          ϱ
                                                                          ϱ   ϱ         ϱ   ϱ
                                                                           t − s           t − s
                                                                                           1
                                                                            2
                                                                   × H ω            − H ω           F(s)ds
                                                                              ϱ              ϱ
            Apply i → ∞, then ∥Ξex i (t)−Ξex(t)∥ → 0. There-
            fore we conclude that Ξ is continuous.                  L 1 t ϱ(1−µ) ∥m(s)∥
                                                                                     ϱ
                                                                                          ϱ ω
                                                                I 1 ≤  2            (t − t ) ,
                                                                    ϱ τ(ω−1) Γ(ω + 1)  2  1
            Step-3:
                                                                     L 1 ∥m(s)∥  Z  t 1   ϱ(1−µ)
                                                                                                 ϱ
                                                                                                      ϱ ω−1
            Now, we show that Ξ is equicontinuous for each      I 2 ≤  τ(ω−1)       s ϱ−1  t 2  (t − s )
                                                                                                 2
            t ∈ U, let for any ex ∈ B r and 0 ≤ t 1 ≤ t 2 ≤ u,      ϱ      Γ(ω)  0

                                                                       ϱ(1−µ)  ϱ   ϱ ω−1
                                                                    − t 1    (t − s )    ds.
                                                                              1
                                            ϱ   1−µ
                                            t 2
                                   ≤ sup                                                      ϱ    ϱ
              ∥Ξex(t 2 ) − Ξex(t 1 )∥ C τ,ω                   Therefore, I 1 → 0 and I 2 → 0 as t → t and from
                                                                                                   1
                                                                                              2
                                      t 2 ∈U  ϱ                                                     ϱ    ϱ
                                                              the definition (5), we obtain I 3 → 0 as t → t .
                  
       ϱ     Z  t 2    ϱ  ϱ   ω−1                                           2    1
                   
       t             t − s
                ×  
 R τ,ω  2  e x 0 +    2          s ϱ−1    Therefore, we say that Ξ is equicontinuous.
                           ϱ        0       ϱ

                       ϱ    ϱ       
         ϱ   1−µ
                       t − s          
          t
                        2                         1
                × H ω          F(s)ds 
  − sup                Step-4:
                          ϱ           
    t 1 ∈U  ϱ
                  
       ϱ     Z  t 1    ϱ  ϱ   ω−1     Now, we need to prove that t ∈ U, Ξ(t) =
                   
       t             t − s
                ×  
 R τ,ω  1  e x 0 +    1          s ϱ−1    {(Ξex)(t) : t ∈ B r } is relatively compact in
                           ϱ        0       ϱ

                       ϱ    ϱ       
                      C τ,ω (U, H). Take 0 ≤ t ≤ u then, for every ϵ > 0
                       t − s
                        1
                × H ω          F(s)ds 
                       and α > 0, let t ∈ B r and define the operator Ξ
                          ϱ           
                       on B r by
                                                            87
   88   89   90   91   92   93   94   95   96   97   98