Page 96 - IJOCTA-15-1
P. 96

R. Hariharan, R. Udhayakumar / IJOCTA, Vol.15, No.1, pp.82-91 (2025)

             [9] Abu Arqub, O. (2017). Adaptation of repro-   [21] Zhu, Y., Rao, L. (2000). Differential inclusions
                ducing kernel algorithm for solving fuzzy Fred-   for fuzzy maps.Fuzzy Sets Systems, 112, 257-261.
                holm–Volterra integrodifferential equations. Neu-  https://doi.org/10.1016/S0165-0114(98)0
                ral Computing and Applications, 28, 1591-1610.    0077-3
                https://doi.org/10.1007/s00521-015-211        [22] Chen, X., Gu, H., & Wang, X. (2020). Exis-
                0-x                                               tence and uniqueness for fuzzy differential equa-
            [10] Abu Arqub, O., Singh, J., & Alhodaly, M. (2023).  tion with Hilfer–Katugampola fractional deriva-
                Adaptation of kernel functions-based approach     tive. Advances in Difference Equations, 2020, 1-
                with Atangana–Baleanu–Caputo distributed or-      16. https://doi.org/10.1186/s13662-020-0
                der derivative for solutions of fuzzy fractional  2696-9
                Volterra and Fredholm integrodifferential equa-  [23] Chen, M., Fu, Y., Xue, X., & Wu, C. (2008). Two-
                tions. Mathematical Methods in the Applied Sci-   point boundary value problems of undamped un-
                ences, 46(7), 7807-7834. https://doi.org/10.1     certain dynamical systems. Fuzzy Sets and Sys-
                002/mma.7228                                      tems, 159(16), 2077-2089.https://doi.org/10
            [11] Katugampola, U. N. (2011). A new approach to     .1016/j.fss.2008.03.006
                generalized fractional derivatives. arXiv preprint  [24] Katugampola, U. N. (2011). New approach to
                arXiv:1106.0965. https://doi.org/10.48550/a       a generalized fractional integral. Applied mathe-
                rXiv.1106.0965                                    matics and computation, 218(3), 860-865. https:
            [12] Hilfer, R. (Ed.). (2000). Applications of Fractional  //doi.org/10.1016/j.amc.2011.03.062
                Calculus in Physics. World scientific.        [25] Pandey, R., Shukla, C., Shukla, A., Upadhyay,
            [13] Gu, H., & Trujillo, J. J. (2015). Existence of mild  A., & Singh, A. K. (2023). A new approach on
                solution for evolution equation with Hilfer frac-  approximate controllability of Sobolev-type Hilfer
                tional derivative. Applied Mathematics and Com-   fractional differential equations. An International
                putation, 257, 344-354. https://doi.org/10.1      Journal of Optimization and Control: Theories &
                016/j.amc.2014.10.083                             Applications (IJOCTA), 13(1), 130-138. https:
            [14] Oliveira, D. S., & De Oliveira, E. C. (2018). Hil-  //doi.org/10.11121/ijocta.2023.1256
                fer–Katugampola fractional derivatives. Compu-  [26] Sahijwani, L., & Sukavanam, N. (2023). Approx-
                tational and Applied Mathematics, 37(3), 3672-    imate controllability for Riemann-Liouville frac-
                3690. https://doi.org/10.1007/s40314-017          tional differential equations. International Jour-
                -0536-8                                           nal of Optimization & Control: Theories & Ap-
            [15] Bede, B., & Stefanini, L. (2013). Generalized dif-  plications(IJOCTA), 13(1). https://doi.org/
                ferentiability of fuzzy-valued functions. Fuzzy sets  10.11121/ijocta.2023.1178
                and systems, 230, 119-141. https://doi.org/10  [27] Ghazouani, A. Z. I. Z., Amir, F. I. A., Elomari,
                .1016/j.fss.2012.10.003                           M. H., & Melliani, S. (2023). On the existence
            [16] Chang, S. S., & Zadeh, L. A. (1972). On fuzzy    and uniqueness of fuzzy mild solution of fractional
                mapping and control. IEEE transactions on sys-    evolution equations. Kragujevac Journal of Math-
                tems, man, and cybernetics, (1), 30-34. https:    ematics, 49(6), 949-966. https://doi.org/10.4
                //doi.org/10.1109/TSMC.1972.5408553               6793/KgJMat2506.949G
            [17] Agarwal, R. P., Lakshmikantham, V., & Nieto, J.  [28] Sene, N., & Ndiaye, A. (2024). Existence and
                J. (2010). On the concept of solution for fractional  uniqueness study for partial neutral functional
                differential equations with uncertainty. Nonlinear  fractional differential equation under Caputo
                Analysis: Theory, Methods & Applications, 72(6),  derivative. An International Journal of Opti-
                2859-2862. https://doi.org/10.1016/j.na.2         mization and Control: Theories & Applications
                009.11.029                                        (IJOCTA), 14(3), 208-219. https://doi.org/10
            [18] Abu Arqub, O., Singh, J., Maayah, B., & Al-      .11121/ijocta.1464
                hodaly, M. (2023). Reproducing kernel approach  [29] Dineshkumar, C., Udhayakumar, R., Vijayaku-
                for numerical solutions of fuzzy fractional ini-  mar, V., Nisar, K. S., Shukla, A., Abdel-Aty, A.
                tial value problems under the Mittag–Leffler ker-  H., ... & Mahmoud, E. E. (2022). A note on ex-
                nel differential operator. Mathematical Methods in  istence and approximate controllability outcomes
                the Applied Sciences, 46(7), 7965-7986. https:    of Atangana-Baleanu neutral fractional stochastic
                //doi.org/10.1002/mma.7305                        hemivariational inequality. Results in Physics, 38,
            [19] Arshad, S. (2013). On existence and uniqueness   105647. https://doi.org/10.1016/j.rinp.202
                of solution of fuzzy fractional differential equa-  2.105647
                tions. Iranian Journal of Fuzzy Systems, (2013)
                                                              Ramara Hariharan obtained his B.Sc. and M.Sc.
                (10), 137-151. https://doi.org/10.22111/IJF
                S.2013.1336                                   degrees in Mathematics from Bishop Heber College
            [20] Allahviranloo, T., Armand, A., & Gouyandeh, Z.  affiliated under Bharathidasan University, Tiruchi-
                (2014). Fuzzy fractional differential equations un-  rappalli, Tamil Nadu, India in 2020 and 2022, respec-
                der generalized fuzzy Caputo derivative. Journal  tively. Now, he is pursuing his Ph.D. degree under the
                of Intelligent & Fuzzy Systems, 26(3), 1481-1490.  guidance of Prof. R. Udhayakumar at the Department
                https://doi.org/10.3233/IFS-130831            of Mathematics, School of Advanced Sciences, Vellore
                                                            90
   91   92   93   94   95   96   97   98   99   100   101