Page 94 - IJOCTA-15-1
P. 94

R. Hariharan, R. Udhayakumar / IJOCTA, Vol.15, No.1, pp.82-91 (2025)
                                                                        t−ϵ  ∞   t − s ϱ
                                                                                  ϱ
                                                                      Z    Z            ω−1
                                                                  +ω                         s ϱ−1 δM ω (δ)
             Ξ ϵ,α e x(t) =     e x 0                                  0    α       ϱ
                       Γ(1 + ϱ(µ − 1) − ω)                               t − s ϱ   ω
                                                                            ϱ

                                                                    × J              δ F(s)dδds
                     t−ϵ   ∞   t − s ϱ                                        ϱ
                               ϱ
                   Z    Z            1+ϱ(µ−1)−ω−1
                 ×                                 s ϱ+ω−2                        2
                    0     α      ϱ                                  e x 0 ωL E t ϱ+ω+(ϱ −ϱ)(µ−1)
                                ϱ   ω                         ≤
                                 t                                      ϱ 2+(ϱ−1)(µ−1)−ω
                 × ωδM ω (δ)J         δ dδds
                                 ϱ                                              ω+ϱ−1
                                                                       B t−ϵ ϱ        , 1 + ϱ(µ − 1) − ω
                   t−ϵ  ∞   t − s ϱ                                 ×      t
                             ϱ
                 Z    Z            ω−1                                 (  )     ϱ
               +                        s ϱ−1 ωδM ω (δ)                       Γ(1 + ϱ(µ − 1) − ω)
                  0    α       ϱ                                                   Z  α
                       ϱ   ϱ   ω                                        1
                        t − s                                       ×            +     δM ω (δ)dδ
                 × J              δ F(s)dδds                            Γ(1 + ω)     0
                           ϱ
                      ϱ   ω                                    L E ωt ϱ+τϱ(ω−1) ∥m(s)∥
                       ϵ                 e x 0                    +                      B t−ϵ ϱ(1, ω)
               =ωJ          α                                             ϱ 1+τ(ω−1)       (  t  )
                       ϱ        Γ(1 + ϱ(µ − 1) − ω)
                                                                                   Z  α
                                                                            1
                               ϱ
                     t−ϵ   ∞   t − s ϱ                              ×            +     δM ω (δ)dδ
                   Z    Z            1+ϱ(µ−1)−ω−1
                 ×                                 s ϱ+ω−2 δ            Γ(1 + ω)     0
                                                                                   2
                    0     α      ϱ                                          ϱ+ω+(ϱ −ϱ)(µ−1)
                             ϱ   ω    ϱ   ω                    e x 0 ωL E u
                               t         ϵ                        ≤
                 × M ω (δ)J        δ −        α dδds                     ϱ 2+(ϱ−1)(µ−1)−ω
                               ϱ         ϱ
                                                                                ω+ϱ−1
                   t−ϵ  ∞   t − s ϱ                                      (  )     ϱ
                             ϱ
                 Z    Z            ω−1                               B t−ϵ ϱ        , 1 + ϱ(µ − 1) − ω
               +                        s ϱ−1 ωδM ω (δ)             ×      t
                  0    α       ϱ                                              Γ(1 + ϱ(µ − 1) − ω)
                       ϱ   ϱ   ω    ϱ   ω                          ϱ+τϱ(ω−1)
                        t − s          ϵ                            L E ωu        ∥m(s)∥
                 × J              δ −       α F(s)dδds ,          +                      B t−ϵ ϱ(1, ω)
                                                                                               )
                                                                                           (
                           ϱ           ϱ                                  ϱ 1+τ(ω−1)         t
                                                                                Z  α
                                                                         1
                                                                               +     δM ω (δ)dδ .
                                                                      Γ(1 + ω)
                          ω                        ω
                                                                            0
            since J    ϵ ϱ  α  is compact for   ϵ ϱ  α > 0,
                       ϱ                        ϱ             From the above bounded condition, we can obtain
            then the set Ξ ϵ,α (t) = {Ξ ϵ,α e x(t) : ex ∈ B r } is  that the above right hand equation tends to be 0.
                                                                                                   +
            relatively compact in H. Furthermore, for any     ∥Ξex(t) − Ξ ϵ,α  e x(t)∥ C η,ex  → 0 as α, ϵ → 0 , and we
            e x ∈ B r , we obtain                             also obtain that  R  ∞  δM ω (δ)dδ =  1  from the
                                                                               0              Γ(1+ω)
                                                              Lemma 2.
                                                              Thus, using the Arzela-Ascoli theorem, we
                ∥Ξex(t) − Ξ ϵ,α  e x(t)∥ C η,ex               demonstrate that Ξ(t) is relatively compact in H
                                                              for t ∈ U. Consequently, by the Schauder fixed
                      ϱ   1−µ
                       t      
        e x 0 ω                point theorem (1), Ξ has a fixed point in B r ,
              ≤ sup
                  t∈U  ϱ      
  Γ(1 + ϱ(µ − 1) − ω)          which serves as the mild solution of fuzzy frac-
                                                              tional differential equations (1).
                             ϱ
                     t
                   Z Z  ∞   t − s ϱ   1+ϱ(µ−1)−ω−1
                ×                                s ϱ+ω−2 δ
                    0  0       ϱ                              4. Example
                             ϱ   ω
                              t
                × M ω (δ)J         δ dδds                     Consider the following problem
                              ϱ
                           ϱ
                    t  α   t − s ϱ                                   2 1          2         −t
                  Z Z            ω−1                          
                                                                      ,
                                                                                               sin ex(t,ℓ)
                                                                                 ∂
                                                                     3 2
              +ω                      s ϱ−1 δM ω (δ)            ϱ D 0 +  e x(t, ℓ) =  ∂x 2 ex(t, ℓ) +  e  1+e −t  ,
                   0  0      ϱ                                      1                                     (7)
                                                                    6
                      ϱ    ϱ   ω        
                  ϱ I + ex(0, ℓ) = ex 0 (µ), x ∈ [0, h].
                        t − s               
                      0
                × J              δ F(s)dδds
                          ϱ                 
                            2 1
                                                                          ,
                                                              Where   ϱ D  3 2  is the Hilfer-Katugampola frac-
                      ϱ   1−µ
                       t      
        e x 0 ω                          0 +
              − sup           
                               tional derivative of order τ =  2 3 , ω =  1 2 , t ∈
                  t∈U  ϱ      
  Γ(1 + ϱ(µ − 1) − ω)          (0, 1] = U 1 and ϱ > 0. The function ex(t)(ℓ) =
                               ϱ
                   Z  t−ϵ  Z  ∞   t − s ϱ   1+ϱ(µ−1)−ω−1    e x(t, ℓ). F : U 1 × B → H is a fuzzy mapping and
                ×                                  s ϱ+ω−2
                    0    α       ϱ                            the continuous function F(t, ex(t)) is given by
                              ϱ   ω
                               t                                                       −t
                × δM ω (δ)J         δ dδds                                            e   sin ex(t, ℓ)
                               ϱ                                        F(t, ex(t))(ℓ) =      −t   ,
                                                                                         1 + e
                                                            88
   89   90   91   92   93   94   95   96   97   98   99