Page 153 - IJOCTA-15-2
P. 153

A. Yoku¸s, H. Durur, M.H. Ekici / IJOCTA, Vol.15, No.2, pp.343-353 (2025)
                                                                                           2
            Case 5: If                                        property or behavior of the |u| wave function. In
                                                              particular, in fields such as wave theory or quan-
                                                              tum mechanics, the density of the wave function
                                      √
                                                                                               48
                                             2
                     −    18042 + 186i 31 k ln [a] 2  +       represents the square of the amplitude.
                     v
                          1039417600m
                     u
                     u −
                     u
                               k 2
                     u
                                       √
                                           2
                     t                         4     4
                        + 18042 + 186i 31    k ln [a]
               α 0 =                                    ,
                                   32240
                     21           2   √          2
                                            2
                             2
                α 1 =    17k ln [a] + i 31k ln [a]   ,
                     13
                      21                  √
                                      2
                                2
                                                2
              α 2 = −   i −79ik ln [a] + 7 31k ln [a] 2  ,
                      13
                     84    2     2     √    2     2
               α 3 =     31k ln [a] + 3i 31k ln [a]  ,
                     13
                      42             2    √          2
                                2
                                                2
              α 4 = −   i −31ik ln [a] + 3 31k ln [a]   ,
                      13
                          v
                          u    1039417600m
                             −
                          u
                 16120v 2  −  u     k 2
                          u
                   k 2    t                √    2
                                                    4
                             + 18042 + 186i 31     k ln [a] 4
            κ =                                            ,  Figure 1. 3-2 dimension and contour graphs of the
                                   16120
                                                              equation (13) for α 0 = 0.5, k = 0.2, κ = 0.1, a = e
                                       √
                                31 + 3i 31
                            ϵ =           2  ,
                                    2
                                260k ln [a]
                                                       (20)
            for equation (1), we derive traveling wave soliton
            by substituting values equation (20) into equation
            (10).


                             "
                       1           √            √
            u 5 (x, t) =      3 (−97 − i 31)a 4tv  + (−97 − i 31)a 4kx
                          kx 4
                       tv
                   520(a + a )
                              √
                   + (−8422 − 1126i 31)a 2(tv+kx)
                                                           #
                            √                √
                                                      2
                   + 4(1093 + 69i 31)a 3tv+kx  + 4(1093 + 69i 31)a tv+3kx  k ln [a] 2
                       r
                     1   67600m  9      √
                                                 4
                                             4
                   +    −      +  4689 + 97i 31 k ln [a] .
                    260    k 2  2
                                                       (21)
            Among the solutions obtained by analytical tech-
            nique, equations (13,15,17) are real-valued and
            equations (3,21) are complex-valued solutions.
            The graphs of real value solutions are presented
            as Figures 1-3. Graphs of complex-valued solu-
            tions are presented in Figures 4 and 5. One of
            the most important reasons for presenting these   Figure 2. 3-2 dimension and contour graphs of the
            graphs is that they provide information about the  equation (15) for v= 1, k = 1, m = 0.8, a = e
                                                           348
   148   149   150   151   152   153   154   155   156   157   158