Page 152 - IJOCTA-15-2
P. 152

Effect of diffusion parameters on traveling wave solutions of singular perturbed boussinesq equation
                α 0 , α 1 , α 2 , α 3 , α 4 and m, v, k, `o, κ constants
            are attained from equation (11) the system uti-             6 3a 4tv  + 3a 4kx  − 122a 2(tv+kx)  + 12a 3tv+kx  + 12a tv+3kx   k ln [a] 2  
                                                                                                        2
                                                                       −                    4              
            lizing a software program.                        u 2 (x, t) =  1         (a tv + a kx )       
                                                                                                             .
                                                                      
                                                                        q                                  
                                                                          −169m + 324k 6 ln [a] 4           
                                                                    13 
                                                                       −
                                                                               k
                                                                                                         (15)
            Case 1: If                                        Case 3: If
                                                                             2
                                                                                                2
                                                                       2
                                                                                          2
                                                                α 1 = 6k ln [a] ,  α 2 = −6k ln [a] ,
                               α 1 = 0,
                                                                                          4
                                                                                                2
                                                                                                       2 2
                                                                α 3 = 0,  α 4 = 0,  m = −k ln [a] α 0 − k α ,
                                                                                                          0
                                                                     q
                               840  2     2                                 2     2
                          α 2 =    k ln [a] ,                   v = k  κ + k ln [a] + 2α 0 ,  ` o = 0,
                                13                                                                       (16)
                                                              for equation (1), we derive traveling wave soliton
                                1680  2    2
                        α 3 = −     k ln [a] ,                by substituting values equation (16) into equation
                                 13
                                                              (10).
                                840        2                                  √         2
                                     2
                                                                                    2
                           α 4 =    k ln [a] ,                             k x+t  κ+k ln [a] +2α 0  2  2
                                 13                           u 3 (x, t) =  6a                 k ln [a]  + α 0 .
                                                                                   √    2    2     2
                                                                            a kx  + a kt  κ+k ln [a] +2α 0
                        1      4     2         2 2
                  m =      −36k ln [a] α 0 − 13k α 0  ,                                                  (17)
                       13
                                                              Case 4: If
                          q                                                                          √
                                            2
                                      2
                         k  13κ + 36k ln [a] + 26α 0               260v − 260k κ − 291k ln [a] − 3i 31k ln [a]  2
                                                                                               2
                                                                                         4
                                                                        2
                                                                                2
                                                                                                          4
                   v = −            √               ,         α 0 =                                              ,
                                      13                                               520k 2
                                                                   21     2     2   √    2     2
                                                              α 1 =     17k ln [a] + i 31k ln [a]  ,
                                      1                            13
                           ´
                           U = −            ,                                                            (18)
                                     2
                                 13k ln [a] 2
                                                                   21            √
                                                       (12)   α 2 = −  i −79ik ln [a] + 7 31k ln [a] 2  ,
                                                                          2
                                                                              2
                                                                                     2
                                                                   13
                                                                  84          √
                                                                           2
                                                                       2
                                                                                  2
                                                              α 3 =  31k ln [a] + 3i 31k ln [a] 2  ,
            for equation (1), we derive traveling wave soliton    13
                                                                   42            √
                                                                              2
            by substituting values equation (12) into equation  α 4 = −  i −31ik ln [a] + 3 31k ln [a] 2  ,
                                                                                     2
                                                                          2
                                                                   13                                     √
            (10).                                                −33800v + 67600k v κ − 33800k κ + 42201k ln [a] + 873i 31k ln [a] 4
                                                                                                     4
                                                                                                 8
                                                                       4
                                                                                        4 2
                                                                              2 2
                                                                                                              8
                                                              m =                           2                      ,
                                                                      √                135200k
                                                                 31 + 3i 31
                                                              ` o =      ,
                                                                    2
            u 1 (x, t) =                                         260k ln [a] 2
                                                         4
                   q                        q                                                           (19)
                      36   2                    36   2
               2kx+2kt  κ+ 13 k 2 ln [a] +2α 0 2  2  kx+kt  κ+ 13 k 2 ln [a] +2α 0
            840a              k ln [a] + 13 1 + a         α 0
                                                           .  for equation (1), we derive traveling wave soliton
                                              4
                                 q
                                     36  2
                               kx+kt  κ+ 13 k 2 ln [a] +2α 0
                         13 1 + a                             by substituting values equation (19) into equation
                                                       (13)   (10).
            Case 2: If                                                      2
                                                                        1   v
                                                              u 4 (x, t) =     − κ
                               q
                                               4                      2   k 2
                                           6
                 1               −169m + 324k ln [a]
                            2
                        2
            α 0 =   −18k ln [a] −                ,                                     "
                13                     k                                         1                  √
                                                                        +                 3 (−97 − i 31)a  4tv
                        840             1680                                    tv   kx  4
                                                 2
                           2
                                2
                                            2
            α 1 = 0,  α 2 =  k ln [a] ,  α 3 = −  k ln [a] ,              520(a + a )
                        13               13                                       √
                                         q                                              4kx
                                                        4             + (−97 − i 31)a
                                                     6
                840            1   13v 2  2  −169m + 324k ln [a]
                        2
                    2
            α 4 =  k ln [a] ,  κ =    +                   ,
                 13            13  k 2           k
                                                                                         √
                    1                                                                          2(tv+kx)
            ` o = −      ,                                              + (−8422 − 1126i 31)a
                 13k ln [a] 2                                                         √
                   2
                                                       (14)             + 4(1093 + 69i 31)a 3tv+kx
                                                                                                           #
            for equation (1), we derive traveling wave soliton                        √                  2
                                                                                                    2
                                                                        + 4(1093 + 69i 31)a tv+3kx  k ln [a]  .
            by substituting values equation (14) into equation
            (10).
                                                           347
   147   148   149   150   151   152   153   154   155   156   157