Page 157 - IJOCTA-15-2
P. 157
A. Yoku¸s, H. Durur, M.H. Ekici / IJOCTA, Vol.15, No.2, pp.343-353 (2025)
15. Madsen PA, Sørensen OR. A new form of the 31. Jena SR, Sahu I. A reliable method for voltage of
Boussinesq equations with improved linear dis- telegraph equation in one and two space variables
persion characteristics. Part 2. A slowly-varying in electrical transmission: approximate and ana-
bathymetry. Coast Eng. 1992;18(3-4):183-204. lytical approach. Phys Scr. 2023;98(10):105216.
16. Khaliq S, Ullah A, Ahmad S, Akg¨ul A, Yusuf 32. Sahu I, Jena SR. SDIQR mathematical modelling
A, Sulaiman TA. Some novel analytical solutions for COVID-19 of Odisha associated with influx
of a new extented (2+1)-dimensional Boussinesq of migrants based on Laplace Adomian decom-
equation using a novel method. J Ocean Eng Sci. position technique. Model Earth Syst Environ.
2022. 2023;9(4):4031-4040.
17. Zhao B, Wang J, Dong H, Fu L. Periodic solution 33. Jena SR, Sahu I, Paul AK. Fifth step block
and asymptotic behavior of the three-dimensional method and shooting constant for third order
sixth-order Boussinesq equation in shallow water nonlinear dynamical systems. Int J Syst Assur
waves. Nonlinear Dyn. 2024;112(1):643-659. Eng Manag. 2024;15(6):2218-2229.
18. Hirota R. The direct method in soliton theory (No. 34. Jena SR, Senapati A. One-dimensional heat and
155). Cambridge University Press. 2004. advection-diffusion equation based on improvised
19. Wang Z, Qin Y, Zou L. Quasi-periodic so- cubic B-spline collocation, finite element method
lutions and asymptotic properties for the and Crank-Nicolson technique. Int Commun Heat
nonlocal Boussinesq equation.Chin Phys B. Mass. 2023;147:106958.
2017;26(5):050504. 35. Kumar A, Kumar M, Goswami P. Numerical so-
20. Yang X, Zhang Z, Zhang N. Properties and sta- lution of coupled system of Emden-Fowler equa-
bility analysis of the sixth-order Boussinesq equa- tions using artificial neural network technique.
tions for Rossby waves. Chin J Phys. 2023. Int J Optim Control: Theor Appl. 2024;14(1):62-
21. Charlier C, Lenells J, Wang DS. The “good” 73.
Boussinesq equation: long-time asymptotics. 36. Jena SR, Senapati A. Explicit and implicit numer-
Anal PDE. 2023;16(6):1351-1388. ical investigations of one-dimensional heat equa-
22. Gao Y, Li Y, Su C. Well-posedness for tion based on spline collocation and Thomas al-
good Boussinesq equations subject to quasi- gorithm. Soft Comput. 2024;28(20):12227-12248.
periodic initial data. 2020. arXiv preprint 37. Arslan D, C¸elik E. An approximate solution of
arXiv:2006.07894. singularly perturbed problem on uniform mesh.
23. N’Gbo NG, Xia Y. Traveling wave solution Int J Optim Control Theor Appl. 2024;14(1):74-
of bad and good modified Boussinesq equa- 80.
tions with conformable fractional-order deriva- 38. Durur H, Yoku¸s A, Duran S. Investigation of ex-
tive. Qual Theory Dyn Syst. 2022;21:1-21. act soliton solutions of nematicons in liquid crys-
24. Yang Z, Wang X. Blowup of solutions for the tals according to nonlinearity conditions. Int J
“bad” Boussinesq-type equation. J Math Anal Mod Phys B. 2024;38(04):2450054.
Appl. 2003;285(1):282-298. 39. Vucheva V, Kolkovska N. A symplectic high-order
25. Christov CI, Maugin GA, Velarde MG. Well- accurate numerical method for the sixth order
posed Boussinesq paradigm with purely spa- Boussinesq equation. In: AIP Conference Pro-
tial higher-order derivatives. Phys Rev E. ceedings (Vol. 2953, No. 1). AIP Publishing. 2023.
1996;54(4):3621. 40. Huntul MJ, Abbas M, Iqbal MK. An inverse prob-
¨
26. Yavuz M, Ozdemir N. Analysis of an epidemic lem for investigating the time-dependent coeffi-
spreading model with exponential decay law. cient in a higher-order equation. Comput Appl
Math Sci Appl E-Notes. 2020;8(1):142-154. Math. 2022;41(3):120.
27. El-Gamel M, Mohamed N, Adel W. Genocchi 41. Arslan D. Approximate solutions of singularly
collocation method for accurate solution of non- perturbed nonlinear ill-posed and sixth-order
linear fractional differential equations with er- boussinesq equations with hybrid method. Bitlis
ror analysis. Math Model Numer Simul Appl. Eren Univ Fen Bilim Derg. 2019;8(2):451-458.
2023;3(4):351-375. https://doi.org/10.17798/bitlisfen.491847
¨
28. Yavuz M, Ozdemir N. Comparing the new frac- 42. Song C, Li J, Gao R. Nonexistence of global solu-
tional derivative operators involving exponential tions to the initial boundary value problem for the
and Mittag-Leffler Kernel. Discret Contin Dyn singularly perturbed sixth-order boussinesq-type
Syst S. 2020;13(3): 995-1006. equation. J Appl Math. 2014;2014.
29. Khan A, Khan A, Sinan M. Ion temperature 43. Daripa P. Higher-order Boussinesq equations for
gradient modes driven soliton and shock by two-way propagation of shallow water waves. Eur
reduction perturbation method for electron-ion J Mech B Fluids. 2006;25(6):1008-1021.
magneto-plasma. Math Model Numer Simul Appl. 44. Yoku¸s A, Durur H, Duran S. Simulation and re-
2022;2(1):1-12. fraction event of complex hyperbolic type solitary
30. Yavuz M, Ozdemir N. An integral transform so- wave in plasma and optical fiber for the perturbed
lution for fractional advection-diffusion problem. Chen-Lee-Liu equation. Opt Quantum Electron.
Math Stud Appl. 2018;442-446. 2021;53:1-17.
352

