Page 157 - IJOCTA-15-2
P. 157

A. Yoku¸s, H. Durur, M.H. Ekici / IJOCTA, Vol.15, No.2, pp.343-353 (2025)

             15. Madsen PA, Sørensen OR. A new form of the    31. Jena SR, Sahu I. A reliable method for voltage of
                Boussinesq equations with improved linear dis-    telegraph equation in one and two space variables
                persion characteristics. Part 2. A slowly-varying  in electrical transmission: approximate and ana-
                bathymetry. Coast Eng. 1992;18(3-4):183-204.      lytical approach. Phys Scr. 2023;98(10):105216.
             16. Khaliq S, Ullah A, Ahmad S, Akg¨ul A, Yusuf  32. Sahu I, Jena SR. SDIQR mathematical modelling
                A, Sulaiman TA. Some novel analytical solutions   for COVID-19 of Odisha associated with influx
                of a new extented (2+1)-dimensional Boussinesq    of migrants based on Laplace Adomian decom-
                equation using a novel method. J Ocean Eng Sci.   position technique. Model Earth Syst Environ.
                2022.                                             2023;9(4):4031-4040.
             17. Zhao B, Wang J, Dong H, Fu L. Periodic solution  33. Jena SR, Sahu I, Paul AK. Fifth step block
                and asymptotic behavior of the three-dimensional  method and shooting constant for third order
                sixth-order Boussinesq equation in shallow water  nonlinear dynamical systems. Int J Syst Assur
                waves. Nonlinear Dyn. 2024;112(1):643-659.        Eng Manag. 2024;15(6):2218-2229.
             18. Hirota R. The direct method in soliton theory (No.  34. Jena SR, Senapati A. One-dimensional heat and
                155). Cambridge University Press. 2004.           advection-diffusion equation based on improvised
             19. Wang Z, Qin Y, Zou L. Quasi-periodic so-         cubic B-spline collocation, finite element method
                lutions  and  asymptotic  properties  for  the    and Crank-Nicolson technique. Int Commun Heat
                nonlocal Boussinesq equation.Chin Phys B.         Mass. 2023;147:106958.
                2017;26(5):050504.                            35. Kumar A, Kumar M, Goswami P. Numerical so-
             20. Yang X, Zhang Z, Zhang N. Properties and sta-    lution of coupled system of Emden-Fowler equa-
                bility analysis of the sixth-order Boussinesq equa-  tions using artificial neural network technique.
                tions for Rossby waves. Chin J Phys. 2023.        Int J Optim Control: Theor Appl. 2024;14(1):62-
             21. Charlier C, Lenells J, Wang DS. The “good”       73.
                Boussinesq equation:  long-time asymptotics.  36. Jena SR, Senapati A. Explicit and implicit numer-
                Anal PDE. 2023;16(6):1351-1388.                   ical investigations of one-dimensional heat equa-
             22. Gao Y, Li Y, Su C. Well-posedness for            tion based on spline collocation and Thomas al-
                good Boussinesq equations subject to quasi-       gorithm. Soft Comput. 2024;28(20):12227-12248.
                periodic initial data. 2020. arXiv preprint   37. Arslan D, C¸elik E. An approximate solution of
                arXiv:2006.07894.                                 singularly perturbed problem on uniform mesh.
             23. N’Gbo NG, Xia Y. Traveling wave solution         Int J Optim Control Theor Appl. 2024;14(1):74-
                of bad and good modified Boussinesq equa-         80.
                tions with conformable fractional-order deriva-  38. Durur H, Yoku¸s A, Duran S. Investigation of ex-
                tive. Qual Theory Dyn Syst. 2022;21:1-21.         act soliton solutions of nematicons in liquid crys-
             24. Yang Z, Wang X. Blowup of solutions for the      tals according to nonlinearity conditions. Int J
                “bad” Boussinesq-type equation. J Math Anal       Mod Phys B. 2024;38(04):2450054.
                Appl. 2003;285(1):282-298.                    39. Vucheva V, Kolkovska N. A symplectic high-order
             25. Christov CI, Maugin GA, Velarde MG. Well-        accurate numerical method for the sixth order
                posed Boussinesq paradigm with purely spa-        Boussinesq equation. In: AIP Conference Pro-
                tial  higher-order  derivatives.  Phys Rev E.     ceedings (Vol. 2953, No. 1). AIP Publishing. 2023.
                1996;54(4):3621.                              40. Huntul MJ, Abbas M, Iqbal MK. An inverse prob-
                          ¨
             26. Yavuz M, Ozdemir N. Analysis of an epidemic      lem for investigating the time-dependent coeffi-
                spreading model with exponential decay law.       cient in a higher-order equation. Comput Appl
                Math Sci Appl E-Notes. 2020;8(1):142-154.         Math. 2022;41(3):120.
             27. El-Gamel M, Mohamed N, Adel W. Genocchi      41. Arslan D. Approximate solutions of singularly
                collocation method for accurate solution of non-  perturbed nonlinear ill-posed and sixth-order
                linear fractional differential equations with er-  boussinesq equations with hybrid method. Bitlis
                ror analysis. Math Model Numer Simul Appl.        Eren Univ Fen Bilim Derg. 2019;8(2):451-458.
                2023;3(4):351-375.                                https://doi.org/10.17798/bitlisfen.491847
                          ¨
             28. Yavuz M, Ozdemir N. Comparing the new frac-  42. Song C, Li J, Gao R. Nonexistence of global solu-
                tional derivative operators involving exponential  tions to the initial boundary value problem for the
                and Mittag-Leffler Kernel. Discret Contin Dyn     singularly perturbed sixth-order boussinesq-type
                Syst S. 2020;13(3): 995-1006.                     equation. J Appl Math. 2014;2014.
             29. Khan A, Khan A, Sinan M. Ion temperature     43. Daripa P. Higher-order Boussinesq equations for
                gradient modes driven soliton and shock by        two-way propagation of shallow water waves. Eur
                reduction perturbation method for electron-ion    J Mech B Fluids. 2006;25(6):1008-1021.
                magneto-plasma. Math Model Numer Simul Appl.  44. Yoku¸s A, Durur H, Duran S. Simulation and re-
                2022;2(1):1-12.                                   fraction event of complex hyperbolic type solitary
             30. Yavuz M, Ozdemir N. An integral transform so-    wave in plasma and optical fiber for the perturbed
                lution for fractional advection-diffusion problem.  Chen-Lee-Liu equation. Opt Quantum Electron.
                Math Stud Appl. 2018;442-446.                     2021;53:1-17.

                                                           352
   152   153   154   155   156   157   158   159   160   161   162