Page 182 - IJOCTA-15-2
P. 182

An investigation on the optimality condition of Caputo fractional time delay system
            systems with both Dirichlet and Neumann con-       7. Sene N, Ndiaye A. Existence and uniqueness
            ditions. Eventually, numerical example is worked      study for partial neutral functional fractional dif-
            out to validate the established results. These re-    ferential equation under Caputo derivative. Int J
            sults can be extended to a wider class of fractional  Optimiz Control, 202414(3), 208-219.
            delay differential systems with suitable modifica-    https://doi.org/10.11121/ijocta.1464
            tions.
                                                                                    ¨
                                                               8. Evirgen F, U¸car S, Ozdemir N, Jajarmi A. En-
            Acknowledgments                                       hancing maize foliar disease management through
                                                                  fractional optimal control strategies. Discrete
            The author expresses sincere gratitude to Mahin-
                                                                  Contin Dynam Syst-S, 2025;18(5): 1353-1371.
            dra University for supporting this research.
                                                                  https://doi.org/10.3934/dcdss.2024150
            Funding
                                                               9. Baleanu D, Jajarmi A, Sajjadi SS, Mozyrska D.
            This work has financial support of Farhangian
                                                                  A new fractional model and optimal control of a
            University (Contract No. 500.17474.120).
                                                                  tumor immune surveillance with non-singular de-
                                                                  rivative operator. Chaos.2019; 29(8): 083127.
            Conflict of interest
                                                                  https://doi.org/10.1063/1.5096159
            The author declare that they have no conflict of
            interest regarding the publication of this article.  10. Baleanu D, Hajipour M, Jajarmi A. An accurate
                                                                  finite difference formula for the numerical solu-
            Author contributions
                                                                  tion of delay-dependent fractional optimal con-
            This is a single-authored article.                    trol problems. Int J OptimizContr Theor Appl.,
                                                                  2024;14(3):183-192.
            Availability of data                                  https://doi.org/10.11121/ijocta.1478

            Not applicable.
                                                              11. Sarkar D,, Chandok S, Konar P, Bhardwaj R,
            References                                            Choudhary PRS. Coupling, optimization and the
                                                                  effect of binary relation. J Anal., 2023;31, 1081-
              1. Barbu V. Hamilton-Jacobi equations and non-      1100.
                linear control problems. J Math Anal Appl.,       https://doi.org/10.1007/s41478-022-00503-0
                1986;120:494-509.
                https://doi.org/10.1016/0022-247X(86)90171-X
                                                              12. Sahijwani L, Sukavanam N. Approximate control-
              2. Barron EN, Jensen R. The Pontryagin maximum      lability for Riemann-Liouville fractional differen-
                princple from dynamic programming and vis-        tial equations.  Int J Optimiz Control: Theo-
                cosity solutions to first order partial differential  rAppl. 2023;13:59-67.
                equations. Trans Am MathSoc. 1986; 298:635-       https://doi.org/10.11121/ijocta.2023.1178
                641.
                https://doi.org/10.1090/S0002-9947-1986-
                                                              13. Durga N, Muthukumar P. Optimal control of frac-
                0860384-4
                                                                  tional reaction-diffusion equations with Poisson
              3. Pontryagin LS. The Mathematical Theory of Op-    jumps. J Anal., 2019;27:605-621.
                timal Processes. New York:Interscience;1962.      https://doi.org/10.1007/s41478-018-0097-2
              4. Jajarmi A, Baleanu D. On the fractional optimal
                control problems with a general derivative opera-  14. Bahaa GM. Fractional optimal control prob-
                tor. Asian J Control. 2021;23(2):1062-1071.       lem for variational inequalities with control
                https://doi.org/10.1002/asjc.2282                 constraints. IMA J Math Control Inform.,
                                                                  2018;35(1): 107-122.
              5. Razminia A, Asadizadehshiraz M, Torres DFM.
                Fractional order version of the Hamilton-Jacobi-
                                                              15. Lions JL.  Optimal Control of Systems Gov-
                Bellman equation. J Comput Nonlinear Dyn.
                                                                  erned by Partial Differential Equations. Band 170.
                2019;14(1): 011005.
                                                                  Berlin:Springer; 1971.
                https://doi.org/10.1115/1.4041912
                                                                  https://doi.org/10.1007/978-3-642-65024-6
              6. Haq A, Sukavanam N. Controllability of nonlin-
                ear fractional integrodifferential systems involving
                                                              16. Pazy A. Semigroups of Linear Operators and Ap-
                multiple delays in control. Int J OptimizControl
                                                                  plications to Partial Differential Equations. New
                Theor Appl. 2024;14(1):1-11.
                                                                  York/Berlin/Heidelberg:Springer-Verlag; 1983.
                https://doi.org/10.11121/ijocta.1428
                                                                  https://doi.org/10.1007/978-1-4612-5561-1
                                                           377
   177   178   179   180   181   182   183   184   185   186