Page 177 - IJOCTA-15-2
P. 177

S. Das / IJOCTA, Vol.15, No.2, pp.368-378 (2025)
            4.1. Optimal control of Dirichlet
                 fractional system                            C  α        ∗           ∗        ∗
                                                              t  D p(u)+A (t)p(u)+F p(u) = C (Cz(u)−ob d )
                                                                 T
                      2
            Let U = L (Ω) be defined as the space of controls.                                           (34)
                                           1
            The state of the system z(u) ∈ H (Ω) satisfies the  in Q
            following ∀u ∈ U                                               p(x, T; u) = 0, x ∈ Ω.        (35)
                                                                  Multiplying (34) by z(v)−z(u) and by apply-
                 α
             C D z(u)+A(t)z(u)+Fz(u) = k+Bu in Q (23)         ing Green’s formula, also considering conditions
             0   t
                                                              in (23) and (24) we get
                             z(u) = 0 on Γ,            (24)
                        z(x, 0; u) = z 0 (x), x ∈ Ω,   (25)       Z
                                                                       ∗
                Observability condition is given by                  C (Cz(u) − ob d )(z(v) − z(u))dxdt
                                                                   Q
                                                                    Z
                                                                                     ∗
                             ob(u) = Cz(u)             (26)       =    ( D p(u) + A (t)p(u)
                                                                        C
                                                                           α
                                                                           T
                                                                        t
                               2
                        2
            s.t. C ∈ L(L (Q), L (Q)).                                 Q
                                                                     ∗
                                                                  +F p(u))(z(v) − z(u))dxdt
                                                       2
                Cost function is defined for all ob d ∈ L (Q)       Z    1−α               +
                                                                  =    t I  p(x, 0)(z(v; x, 0 )dx
            as                                                           T
                                                                      Ω
                                                                      Z
                                                                                            +
                      Z                                           = −    t I 1−α p(x, 0)z(u; x, 0 ))dx
                    1                2       1                             T
            J(u) =      (Cz(u)−ob d ) dxdt+ (Nu, u) 2                   Ω
                                                     L (Q)),
                    2  Q                     2                      Z       ∂z(v)    ∂z(u)
                                                       (27)       +    p(u)(      −        )dΓ
                               2
                                      2
                where N ∈ L(L (Q), L (Q)), N is Hermitian            Γ      ∂ν A(t)  ∂ν A(t)
                                                                    Z
            positive definite, i.e.,                                   ∂p(u)
                                                                  −          (z(v) − z(u))dΓ
                                                                     Γ  ∂ν A ∗
                                                                    Z
                                     2
                                                                               α
                  (Nu, u) 2    ≥ d∥u∥ 2   , d > 0.     (28)       +    p(u)( 0 D + A(t) + F)(z(v) − z(u))dxdt
                         L (Q)
                                     L (Q)
                                                                               t
                U ad be the set of admissible controls, which is     Q
            convex and closed subset of U.                                                               (36)
                                                                  By Equation (3), we know
                The control problem is to find u ∈ U ad such
                                J(u)
            that J(u) = inf u∈U ad                                    C  α
                                                                     ( D t  + A(t) + F)(z(v) − z(u))
                                                                      0
            Theorem 1. Suppose the cost function is defined                     = Bv − Bu                (37)
            by (27). If (28) holds, then optimal control u is
            characterized by (23), (24), (25) along with      So
                                                                      Z
                                                                          ∗
                                                                         C (Cz(u) − ob d )(z(v) − z(u))dxdt
            C   α        ∗          ∗         ∗                        Q
            t  D p(u)+A (t)p(u)+F p(u) = C (Cz(u)−ob d )                Z
                T
                                                       (29)           =    p(u)(Bv − Bu)dxdt.            (38)
                 in Q                                                    Q
                         p(x, T; u) = 0, x ∈ Ω,        (30)       which gives
                and optimality condition is given by
                                                                     Z
                                                                        (Cz(u) − ob d )(Cz(v) − Cz(u))dxdt
             Z
                   ∗
                (B p(u) + Nu)(v − u)dxdt ≥ 0 ∀v ∈ U ad (31)            Q Z
               Q                                                            ∗
                                                                     =     B p(u)(v − u)dxdt.            (39)
                where the adjoint state is denoted by p(u)               Q
            Proof. We know that the control u ∈ U ad is op-       From Equation (33) we have
            timal iff
                                                                                        L (Q)
                        ′
                      J (u)(v − u) ≥ 0   ∀v ∈ U ad     (32)   (Cz(u)−ob d , Cz(v)−Cz(u)) 2   +(Nu, v−u) U ≥ 0
                                                                  This implies
            i.e.
            (Cz(u)−ob d , Cz(v)−Cz(u)) 2   +(Nu, v−u) U ≥ 0     Z
                                       L (Q)
                                                                      ∗
                                                       (33)        (B p(u) + Nu)(v − u)dxdt ≥ 0, ∀v ∈ U ad
                The adjoint state p satisfies the adjoint prob-   Q
            lem                                                   Thus, by substituting (39) in (33) we obtain
                                                           372
   172   173   174   175   176   177   178   179   180   181   182