Page 175 - IJOCTA-15-2
P. 175

S. Das / IJOCTA, Vol.15, No.2, pp.368-378 (2025)
            Definition 2.  14  For f : R + → R, fractional left  Therefore,
            Riemann-Liouville integral of order α > 0 is de-
                      α
            fined as t I f(t) =  1  R  T  (s−t) α−1 f(s)ds, t > 0.
                      T       Γ(α)  t                             ζ(t; z, z) = ((A(t) + F)z, z) 2  ,
                                                                                            L (Ω)
                                                                    Z               ∂z(x, t) ∂z(x, t)
                                                                  =    Σ n   c                     dx
                                                                         i,j=1 ij (x, t)
                                                                     Ω                ∂x i    ∂x j
            Definition 3.  14  For f : R + → R, fractional left     Z
            Caputo derivative of order α ∈ (0, 1) is defined as   +    c 0 (x, t)z(x, t)z(x, t)dx
                α
            C D f(t) =    1   R  t (t − s) 1−α ′                     Ω
                                          f (s)ds.
            0   t       Γ(1−α)  0                                   Z
                                                                                                         1
                                                                  +    c(x, ρ(t, z(t)))z(x, t)z(x, t)dx, z ∈ H (Ω)
                                                                                                         0
                                                                     Ω
                                                                                    ∂        2
                                                                      n
                                                                          c
            Definition 4.  14  For f : R + → R, fractional right  ≥ Σ i,j=1 i,j (x, t)∥  z(x, t)∥ 2
                                                                                             L (Ω)
                                                                                   ∂x i
            Caputo derivative of order α ∈ (0, 1) is defined as               2
                α
            C D f(t) =    −1  R  T  (s − t) 1−α ′                 +c 0 ∥z(x, t)∥ 2
                                                                              L (Ω)
                                          f (s)ds.
            t   T       Γ(1−α)  t                                   Z
                                                                                              1
                                                                  +    az(x, t)z(x, t)dx, z ∈ H (Ω)
                                                                                             0
                                                                     Ω
                                                                                    ∂
                                                                                             2
                Also when T = ∞ it is fractional order α Weyl     ≥ Σ n   c           z(x, t)∥ 2
                                                                      i,j=1 i,j (x, t)∥
                                                                                             L (Ω)
                        ′
            integral of f .                                                        ∂x i
                                                                              2
                                                                  +c 0 ∥z(x, t)∥ 2
                                                                              L (Ω)
                                                                             2
                                                                  +a∥z(x, t)∥ 2
                                                                             L (Ω)
            Definition 5. Bilinear form ζ(t; z, ϕ) is defined            2
                       1
                                                                          1
            below in H (Ω) for each t ∈ (0, T) as                 ≥ λ∥z∥ H (Ω) , λ > 0.                   (10)
                       0                                                  0
                                                      1
             ζ(t; z, ϕ) = ((A(t) + F)z, ϕ) 2  , z, ϕ ∈ H (Ω).                                1
                                       L (Ω)
                                                     0
                                                        (6)       It is assumed that ∀z, ϕ ∈ H (Ω) the bilinear
                                                                                             0
                                                                                    1
                                                              form t → ζ(t; z, ϕ) is C with respect to t ∈ (0, T)
                Then                                          is symmetric, i.e.,
                                                                            ζ(t; z, ϕ) = ζ(t; ϕ, z)      (11)
                    ζ(t; z, ϕ) = ((A(t) + F)z, ϕ) 2  ,
                                              L (Ω)
                      Z               ∂z(x, t) ∂ϕ(x, t)
                    =    Σ n   c                     dx       The existence of unique solution for the sys-
                           i,j=1 ij (x, t)
                       Ω                ∂x i    ∂x j          tem (3) − (5) is derived using Lax-Milgram
                                                              lemma.
                      Z                                              15
                    +    c 0 (x, t)z(x, t)ϕ(x, t)dx
                       Ω
                      Z
                                                   1
                    +    Fz(x, t)ϕ(x, t)dx, z, ϕ ∈ H (Ω) (7)
                                                  0
                       Ω
                                                              3.1. Fractional Green’s theorem
                                                              Lemma 2. Let z be a solution of the system
                                                                                   ∞
            Lemma 1. The bilinear form ζ(t; z, ϕ) defined in  (3) − (5), then ∀ϕ ∈ C (Q) and ϕ(x, T) = 0 in Ω
                                1
            (6) is coercive on H (Ω), i.e.,                   and ϕ = 0 in Σ, z satisfies the following equation.
                               0
                      ζ(t; z, ϕ) ≥ λ∥z∥ 2  , λ > 0.     (8)
                                       1
                                     H (Ω)
                                       0                          Z  T  Z
                                                                            α
                                                                         C
                                                                        ( D z(x, t) + A(t)z(x, t))ϕ(x, t)dxdt =
                                                                         0
                                                                            t
                                                                   0   Ω
                                                                    Z
            Proof. We know ellipticity is sufficient to prove     −    z(x, 0) t I 1−α ϕ(x, 0)dΩ
            coerciveness. As                                         Ω         T
                                                                      T          ∂ϕ(x, t)
                                                                    Z   Z
                    ζ(t; z, ϕ) = ((A(t) + F)z, ϕ) 2  ,            −        z(x, t)      dΓdt
                                              L (Ω)
                      Z                                              0   Γ         ∂ν
                                      ∂z(x, t) ∂ϕ(x, t)
                           n
                    =    Σ i,j=1 ij (x, t)           dx             Z  T  Z  ∂z(x, t)
                               c
                       Ω                ∂x i    ∂x j              +               ϕdΓdt
                      Z                                                      ∂ν
                                                                     0   Γ
                    +    c 0 (x, t)z(x, t)ϕ(x, t)dx                 Z  T  Z
                                                                                                ∗
                                                                                    α
                       Ω                                          +        z(x, t)( t D ϕ(x, t) + A (t)ϕ(x, t))dxdt
                      Z                                                             T
                                                  1
                    +    Fz(x, t)ϕ(x, t)dx, z, ϕ ∈ H (Ω) (9)         0   Ω
                                                  0
                       Ω                                                                                  (12)
                                                           370
   170   171   172   173   174   175   176   177   178   179   180