Page 176 - IJOCTA-15-2
P. 176

An investigation on the optimality condition of Caputo fractional time delay system
                            ∞
            Proof. ∀ ϕ ∈ C (Q),                                   It is variational form of Dirichlet fractional
                Z  T  Z                                       problem, with M(ϕ) being a continuous linear
                           α
                        C
                                                                                1
                       ( D z(x, t) + A(t)z(x, t))ϕ(x, t)dxdt = form defined on H (Ω) as
                        0
                           t
                                                                               0
                  0  Ω
                   T
                Z   Z
                        C
                           α
                       ( D z(x, t))ϕ(x, t)dxdt                        Z                  Z      1−α
                           t
                        0
                  0  Ω                                        M(ϕ) =     (k + Bu)ϕdxdt −    z 0t I T  ϕ(x, 0)dΓ,
                     T
                  Z   Z                                                Q                   Γ
                +        A(t)z(x, t)ϕ(x, t)dxdt          (13)                                            (19)
                    0  Ω                                                       2          2
                                                                  (k + Bu) ∈ L (Q), z 0 ∈ L (Ω).
            Now the second integral on the RHS is
                     T
                   Z   Z
                                                                              1
                          A(t)z(x, t)ϕ(x, t)dxdt                  Now ∀ϕ ∈ H (Ω), (17) is same as
                                                                             0
                    0   Ω
                        T     ∂ϕ          T      ∂z
                     Z   Z              Z   Z
                   =         z   dϱdt −         ϕ   dϱdt             Z  C  α
                       0  ∂Ω   ∂ν        0   ∂Ω  ∂ν                    ( D z(t) + (A(t) + F)z(t))ϕ(x)dxdt
                                                                        0
                                                                           t
                   Z  T  Z                                            Q
                                 ∗
                          z(x, t)A (t)ϕ(x, t)dxdt                      Z
                    0   Ω                                            =    (k + Bu)ϕdxdt
                                                                        Q
                                                       (14)
                                                                       Z
            The first integral on RHS of equation (13) is            −   z 0t I T 1−α ϕ(x, 0)dΓ,         (20)
                                                                        Γ
                       Z  T  Z
                                  α
                              C
                              ( D z(x, t)ϕ(x, t))dxdt             which is the same fractional partial differen-
                              0
                                  t
                        0   Ω                                 tial equation
                               T
                          Z Z
                                         α
                       =        z(x, t) t D ϕ(x, t)dxdt
                                         T
                           Ω  0
                                                               ( D z(t) + (A(t) + F)z(t)) = k(t) + Bu(t) (21)
                         Z                                      C  α
                                                                0
                                                                   t
                       +    ϕ(x, T) 0 I 1−α z(x, T)dΩ
                                     T
                          Ω                                       integrated against test function ϕ(x).
                         Z
                       −    z(x, 0) t I 1−α ϕ(x, 0)dΩ
                                    T
                          Ω
                                                                  Using fractional Green’s lemma (2), to LHS
                                                       (15)
                                                              of Equation (20),it is shown that
            Thus adding equations (14) and (15) we get
            (12)
                                                                     Z
                                                                           α
                                                                        C
                                                                       ( D z(t) + (A(t) + F)z(t))ϕ(x)dxdt
                                                                        0
                                                                           t
            4. Dirichlet fractional system                            Q
                                                                         Z
            Lemma 3. The system (3) − (5) has a unique               = −    z(x, 0) t I 1−α ϕ(x, 0)dx
            solution z ∈ S(0, T) whenever (6) and (8) holds.              Γ        T
                                                                       Z  T  Z     ∂ϕ(x, t)
            Proof. Using Theorem (3.1) of   15  we can show          −       z(x, t)       dΓdt
            by the coercivity property (8) and Lax-Milgram              0   Γ         ∂ν
                                                 1
            theorem 14  ∃ a unique solution z(t) ∈ H (Ω) which         Z  T  Z  ∂z(x, t)
                                                 0
            satisfies                                                +          ∂ν   ϕdΓdt
                                                                        0   Γ
                                                                         T          C  α
                                                                       Z   Z
                                                       1
                α
             C
            ( D z(t), ϕ) 2 +ζ(t; z, ϕ) = M(ϕ), ∀ϕ ∈ H (Ω)            +       z(x, t)( D ϕ(x, t)dxdt
                                                                                       T
                                                                                    t
                                                       0
                        L
                t
             0
                          (Q)                                           0   Ω
                                                       (16)            Z  T  Z               ∗
                This implies that there exists a unique so-          +       z(x, t)(A(t) + F) ϕ(x, t))dxdt
                            1
            lution z(t) ∈ H (Ω) that satisfies the following            0   Ω
                            0                                          Z
                    1
            ∀ϕ ∈ H (Ω)                                               =    (k + Bu)ϕdxdt
                   0
                                                                        Q
                                                                       Z
              C  α                                                           1−α
             ( D z(t), ϕ) 2  + ((A(t) + F)z(t), ϕ) = M(ϕ),           −   z 0t I T  ϕ(x, 0)dΓ             (22)
              0
                         L
                 t
                          (Q)                                           Γ
                                                       (17)
                                             1
                This is equivalent to ∀ϕ ∈ H (Ω)                  R         1−α            R     1−α
                                             0                      z(x, 0) t I  ϕ(x, 0)dΓ =  z 0t I  ϕ(x, 0)dΓ.
                                                                   Γ        T               Γ    T
                                                              Now comparing both sides of Equation (22) and
             Z
                   α
                C
               ( D z(t) + (A(t) + F)z(t))ϕ(x)dxdt = M(ϕ),     using the fact that ϕ(x, T) = 0, in Ω, as well
                   t
                0
              Q                                               as ϕ = 0 in Γ × [0, T], Equations (3) -(5) are
                                                       (18)   inferred.
                                                           371
   171   172   173   174   175   176   177   178   179   180   181