Page 179 - IJOCTA-15-2
P. 179

S. Das / IJOCTA, Vol.15, No.2, pp.368-378 (2025)


                             ob(u) = Cz(u)             (55)       Z
                                                                       ∗
                                                                     C (Cz(u) − ob d )(z(v) − z(u))dxdt
                                   2
                            2
                s.t. C ∈ L(L (Q), L (Q)).                          Q
                                                                    Z
                                                                                    ∗
                                                                          α
                                                                  =    ( t D p(u) + A (t)p(u)
                                                       2
                                                                          T
                Cost function is defined for all ob d ∈ L (Q)        Q
            as                                                    +F p(u))(z(v) − z(u))dxdt
                                                                     ∗
                                                                    Z
                                                                                           +
                    1  Z                     1                    =    t I T 1−α p(x, 0)(z(v; x, 0 )dx
                                     2
            J(u) =      (Cz(u)−ob d ) dxdt+ (Nu, u) 2                Ω
                                                     L (Q)),
                    2  Q                     2                        Z
                                                                                            +
                                                       (56)       = −    t I T 1−α p(x, 0)z(u; x, 0 ))dx
                                      2
                               2
                where N ∈ L(L (Q), L (Q)), N is Hermitian           Z   Ω   ∂z(v)    ∂z(u)
            positive definite, i.e.,                              +    p(u)(      −        )dΓ
                                                                     Γ      ∂ν A(t)  ∂ν A(t)
                                                                    Z  ∂p(u)
                                     2                            −
                  (Nu, u) 2    ≥ d∥u∥ 2   , d > 0.     (57)                  (z(v) − z(u))dΓ
                         L (Q)
                                     L (Q)
                                                                     Γ  ∂ν A ∗
                U ad be the set of admissible controls, which is    Z       C  α
                                                                  +    p(u)( D + A(t) + F)(z(v) − z(u))dxdt
            convex and closed subset of U.                                  0  t
                                                                     Q
                                                                                                         (66)
                The control problem is to find u ∈ U ad such
                                J(u)                              By Equation (52), we know
            that J(u) = inf u∈U ad
            Theorem 2. Let the cost function be defined by            C  α
            (56). If (57) holds then optimal control u is char-      ( D t  + A(t) + F)(z(v) − z(u))
                                                                      0
            acterized by (52), (53), (54) along with                            = Bv − Bu                (67)
                                                              So
            C   α        ∗          ∗         ∗                       Z
                                                                          ∗
                T
            t  D p(u)+A (t)p(u)+F p(u) = C (Cz(u)−ob d )                 C (Cz(u) − ob d )(z(v) − z(u))dxdt
                                                       (58)            Q
              in Q                                                      Z
                            ∂p(u)                                     =    p(u)(Bv − Bu)dxdt.            (68)
                                  = u on Σ,            (59)              Q
                            ∂ν A ∗
                         p(x, T; u) = 0, x ∈ Ω,        (60)       which gives
                and optimality condition is
                                                                     Z
                                                                        (Cz(u) − ob d )(Cz(v) − Cz(u))dxdt
              Z
                   ∗
                 (B p(u) + Nu)(v − u)dΣ ≥ 0 ∀v ∈ U ad (61)             Q
                                                                        Z
               Σ                                                            ∗
                                                                     =     B p(u)(v − u)dxdt.            (69)
                where p(u) denotes the adjoint state                     Q
                                                                  From Equation (63) we have
            Proof. The control u ∈ U ad is optimal iff
                        ′
                      J (u)(v − u) ≥ 0   ∀v ∈ U ad     (62)
            i.e.                                              (Cz(u)−ob d , Cz(v)−Cz(u)) 2   +(Nu, v−u) U ≥ 0
                                                                                        L (Q)
                     (Cz(u) − ob d , Cz(v) − Cz(u)) 2             This implies
                                                 L (Q)
                     +(Nu, v − u) U ≥ 0                (63)
                                                                Z
                The adjoint state p satisfies the adjoint prob-       ∗
                                                                   (B p(u) + Nu)(v − u)dxdt ≥ 0, ∀v ∈ U ad
            lem                                                   Q
            C   α        ∗          ∗         ∗
            t  D p(u)+A (t)p(u)+F p(u) = C (Cz(u)−ob d )          Thus, by substituting (69) in (63) we obtain
                T
                                                       (64)
              in Q
                                                                Z
                         p(x, T; u) = 0, x ∈ Ω,        (65)          ∗
                                                                  (B p(u)(v − u)dxdt + (Nu, v − u) 2    ≥ 0
                                                                                                  L (Q)
                Multiplying (64) by z(v) − z(u) and by us-       Q
                                                                                                         (70)
            ing Green’s formula, also considering conditions
            in (52) and (53) we get                               Hence, the optimality condition is proved.
                                                           374
   174   175   176   177   178   179   180   181   182   183   184