Page 84 - IJOCTA-15-2
P. 84

Hybridizing biogeography-based optimization and integer programming for solving the travelling tournament ...

             12. RobinX Validator. Available from: https://ro  24. Choubey NS. A novel encoding scheme for travel-
                binxval.ugent.be/RobinX/contact.php [Ac-          ing tournament problem using genetic algorithm.
                cessed 16 January 2020].                          IJCA Spec Issue Evol Comput., 2010;2(7):79–82.
             13. Wolsey LA. Integer Programming. John Wiley &     https://doi.org/10.5120/1536-139
                Sons; 2020.                                   25. Khelifa M, Boughaci D. A variable neighborhood
                https://doi.org/10.1002/9781119606475             search method for solving the traveling tourna-
             14. Ustuncelik M, Koc C, Tunc H. Bin packing prob-   ments problem. Electron Notes Discret Math.,
                lem with restricted item fragmentation: Assign-   2015;47:157–164.
                ment of jobs in multiproduct assembly environ-    https://doi.org/10.1016/j.endm.2014.11.021
                ment with overtime. Int J Optim Control Theor  26. Biajoli FL, Lorena LAN. Clustering search ap-
                Appl. (IJOCTA), 2024;14(1):32–40.                 proach for the traveling tournament problem. In:
                https://doi.org/10.11121/ijocta.1435              Mexican International Conference on Artificial
             15. Kostyukova O, Tchemisova T. Exploring con-       Intelligence. Springer; 2007: 83–93
                straint qualification-free optimality conditions  27. Ribeiro CC, Urrutia S. Heuristics for the mirrored
                for  linear  second-order  cone  programming.     traveling tournament problem. Eur J Oper Res.,
                Int J Optim Control Theor Appl. (IJOCTA),         2007;179(3):775–787.
                2024;14(3):168–182.                               https://doi.org/10.1016/j.ejor.2005.03.061
                https://doi.org/10.11121/ijocta.1421          28. Costa FN, Urrutia S, Ribeiro CC. An ILS heuris-
             16. Mariem K, Saliha M, Abdelaziz HM, Amine FM,      tic for the traveling tournament problem with pre-
                Khaled BM. Novel solutions to the multidimen-     defined venues. Ann Oper Res., 2012;194(1):137–
                sional knapsack problem using CPLEX: New re-      150.
                sults on ORX benchmarks. J Ubiquitous Comput      https://doi.org/10.1007/s10479-010-0719-9
                Commun Technol, 2024;6(3):294–310.            29. Xiang C, Wu Z, van Den Berg D, Weise T.
                https://doi.org/10.36548/jucct.2024.3.007         Randomized local search vs. NSGA-II vs. fre-
             17. Rasmussen  RV,   Trick  MA.   Round   robin      quency fitness assignment on the traveling tourna-
                scheduling–A  survey.  Eur   J  Oper   Res.,      ment problem. In: 16th International Joint Con-
                2008;188(3):617–636.                              ference on Computational Intelligence (IJCCI
                https://doi.org/10.1016/j.ejor.2007.05.046        2024), 2024; 38–49. SciTePress.
             18. Uthus DC, Riddle PJ, Guesgen HW. An ant          https://doi.org/10.5220/0012891500003837
                colony optimization approach to the traveling  30. Westphal S, Noparlik K. A 5.875-approximation
                tournament problem. In: Proceedings of the 11th   for the traveling tournament problem. Ann Oper
                Annual Conference on Genetic and Evolutionary     Res., 2014;218(1):347–360.
                Computation, 2009; 81–88. ACM.                    https://doi.org/10.1007/s10479-012-1061-1
                https://doi.org/10.1145/1569901.1569913       31. Imahori S, Matsui T, Miyashiro R. A 2.75-
             19. Bonomo F, Cardemil A, Dur´an G, Marenco J,       approximation algorithm for the unconstrained
                Sab´an D. An application of the traveling tourna-  traveling tournament problem. Ann Oper Res.,
                ment problem: The Argentine volleyball league.    2014;218(1):237–247.
                Interfaces. 2012;42(3):245–259.                   https://doi.org/10.1007/s10479-012-1161-y
                https://doi.org/10.1287/inte.1110.0587
                                                              32. Chatterjee D, Roy BK. An improved scheduling
             20. Khelifa M, Boughaci D, A¨ımeur E. A new ap-      algorithm for traveling tournament problem with
                proach based on graph matching and evolution-     maximum trip length two. 2021. arXiv preprint
                ary approach for sport scheduling problem. Intell  arXiv:2109.09065.
                Decis Technol., 2020;14(4):565–580.
                                                              33. Xiao M, Kou S. An improved approximation al-
                https://doi.org/10.3233/IDT-190114
                                                                  gorithm for the traveling tournament problem
             21. Khelifa M, Boughaci D, A¨ımeur E. A novel graph-  with maximum trip length two. In: 41st Inter-
                based heuristic approach for solving sport sched-  national Symposium on Mathematical Founda-
                uling problem. In: International Conference on    tions of Computer Science (MFCS 2016). Schloss
                Principles and Practice of Constraint Program-    Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016
                ming, 2018; 229–241. Springer.                34. Anagnostopoulos A, Michel L, Van Hentenryck
                https://doi.org/10.1007/978-3-319-98334-9 1 6
                                                                  P, Vergados Y. A simulated annealing approach
             22. Khelifa M, Boughaci D. Hybrid harmony search     to the traveling tournament problem. J Sched.,
                combined with variable neighborhood search for    2006;9(2):177–193.
                the traveling tournament problem. In: Interna-    https://doi.org/10.1007/s10951-006-7187-8
                tional Conference on Computational Collective
                                                              35. Khelifa M, Boughaci D, A¨ımeur E. An enhanced
                Intelligence, 2016; 520–530. Springer.
                                                                  genetic algorithm with a new crossover opera-
                https://doi.org/10.1007/978-3-319-45243-2 4 8
                                                                  tor for the traveling tournament problem. In:
             23. Carvalho MAM, Lorena LAN. New models for the     Control, Decision and Information Technologies
                mirrored traveling tournament problem. Comput     (CoDIT), 2017 4th International Conference on,
                Ind Eng., 2012;63(4):1089–1095.                   2017; 1072–1077. IEEE.
                https://doi.org/10.1016/j.cie.2012.08.002         https://doi.org/10.1109/CoDIT.2017.8102741
                                                           279
   79   80   81   82   83   84   85   86   87   88   89