Page 84 - IJOCTA-15-2
P. 84
Hybridizing biogeography-based optimization and integer programming for solving the travelling tournament ...
12. RobinX Validator. Available from: https://ro 24. Choubey NS. A novel encoding scheme for travel-
binxval.ugent.be/RobinX/contact.php [Ac- ing tournament problem using genetic algorithm.
cessed 16 January 2020]. IJCA Spec Issue Evol Comput., 2010;2(7):79–82.
13. Wolsey LA. Integer Programming. John Wiley & https://doi.org/10.5120/1536-139
Sons; 2020. 25. Khelifa M, Boughaci D. A variable neighborhood
https://doi.org/10.1002/9781119606475 search method for solving the traveling tourna-
14. Ustuncelik M, Koc C, Tunc H. Bin packing prob- ments problem. Electron Notes Discret Math.,
lem with restricted item fragmentation: Assign- 2015;47:157–164.
ment of jobs in multiproduct assembly environ- https://doi.org/10.1016/j.endm.2014.11.021
ment with overtime. Int J Optim Control Theor 26. Biajoli FL, Lorena LAN. Clustering search ap-
Appl. (IJOCTA), 2024;14(1):32–40. proach for the traveling tournament problem. In:
https://doi.org/10.11121/ijocta.1435 Mexican International Conference on Artificial
15. Kostyukova O, Tchemisova T. Exploring con- Intelligence. Springer; 2007: 83–93
straint qualification-free optimality conditions 27. Ribeiro CC, Urrutia S. Heuristics for the mirrored
for linear second-order cone programming. traveling tournament problem. Eur J Oper Res.,
Int J Optim Control Theor Appl. (IJOCTA), 2007;179(3):775–787.
2024;14(3):168–182. https://doi.org/10.1016/j.ejor.2005.03.061
https://doi.org/10.11121/ijocta.1421 28. Costa FN, Urrutia S, Ribeiro CC. An ILS heuris-
16. Mariem K, Saliha M, Abdelaziz HM, Amine FM, tic for the traveling tournament problem with pre-
Khaled BM. Novel solutions to the multidimen- defined venues. Ann Oper Res., 2012;194(1):137–
sional knapsack problem using CPLEX: New re- 150.
sults on ORX benchmarks. J Ubiquitous Comput https://doi.org/10.1007/s10479-010-0719-9
Commun Technol, 2024;6(3):294–310. 29. Xiang C, Wu Z, van Den Berg D, Weise T.
https://doi.org/10.36548/jucct.2024.3.007 Randomized local search vs. NSGA-II vs. fre-
17. Rasmussen RV, Trick MA. Round robin quency fitness assignment on the traveling tourna-
scheduling–A survey. Eur J Oper Res., ment problem. In: 16th International Joint Con-
2008;188(3):617–636. ference on Computational Intelligence (IJCCI
https://doi.org/10.1016/j.ejor.2007.05.046 2024), 2024; 38–49. SciTePress.
18. Uthus DC, Riddle PJ, Guesgen HW. An ant https://doi.org/10.5220/0012891500003837
colony optimization approach to the traveling 30. Westphal S, Noparlik K. A 5.875-approximation
tournament problem. In: Proceedings of the 11th for the traveling tournament problem. Ann Oper
Annual Conference on Genetic and Evolutionary Res., 2014;218(1):347–360.
Computation, 2009; 81–88. ACM. https://doi.org/10.1007/s10479-012-1061-1
https://doi.org/10.1145/1569901.1569913 31. Imahori S, Matsui T, Miyashiro R. A 2.75-
19. Bonomo F, Cardemil A, Dur´an G, Marenco J, approximation algorithm for the unconstrained
Sab´an D. An application of the traveling tourna- traveling tournament problem. Ann Oper Res.,
ment problem: The Argentine volleyball league. 2014;218(1):237–247.
Interfaces. 2012;42(3):245–259. https://doi.org/10.1007/s10479-012-1161-y
https://doi.org/10.1287/inte.1110.0587
32. Chatterjee D, Roy BK. An improved scheduling
20. Khelifa M, Boughaci D, A¨ımeur E. A new ap- algorithm for traveling tournament problem with
proach based on graph matching and evolution- maximum trip length two. 2021. arXiv preprint
ary approach for sport scheduling problem. Intell arXiv:2109.09065.
Decis Technol., 2020;14(4):565–580.
33. Xiao M, Kou S. An improved approximation al-
https://doi.org/10.3233/IDT-190114
gorithm for the traveling tournament problem
21. Khelifa M, Boughaci D, A¨ımeur E. A novel graph- with maximum trip length two. In: 41st Inter-
based heuristic approach for solving sport sched- national Symposium on Mathematical Founda-
uling problem. In: International Conference on tions of Computer Science (MFCS 2016). Schloss
Principles and Practice of Constraint Program- Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016
ming, 2018; 229–241. Springer. 34. Anagnostopoulos A, Michel L, Van Hentenryck
https://doi.org/10.1007/978-3-319-98334-9 1 6
P, Vergados Y. A simulated annealing approach
22. Khelifa M, Boughaci D. Hybrid harmony search to the traveling tournament problem. J Sched.,
combined with variable neighborhood search for 2006;9(2):177–193.
the traveling tournament problem. In: Interna- https://doi.org/10.1007/s10951-006-7187-8
tional Conference on Computational Collective
35. Khelifa M, Boughaci D, A¨ımeur E. An enhanced
Intelligence, 2016; 520–530. Springer.
genetic algorithm with a new crossover opera-
https://doi.org/10.1007/978-3-319-45243-2 4 8
tor for the traveling tournament problem. In:
23. Carvalho MAM, Lorena LAN. New models for the Control, Decision and Information Technologies
mirrored traveling tournament problem. Comput (CoDIT), 2017 4th International Conference on,
Ind Eng., 2012;63(4):1089–1095. 2017; 1072–1077. IEEE.
https://doi.org/10.1016/j.cie.2012.08.002 https://doi.org/10.1109/CoDIT.2017.8102741
279

