Page 82 - IJOCTA-15-2
P. 82

Hybridizing biogeography-based optimization and integer programming for solving the travelling tournament ...

                                 ·10 4      NL 12                               NL 10



                               1                               2,000
                          Time(s)  0.5                         1,000






                               0                                   0
                                   4     6      8     10                  4       6       8
                                              Ft                                 Ft

                                          Figure 8. Influence of Ft on the runtime

            Table 6. A comparative study for NL


                                            NL 6     NL 8      NL 10      NL 12     NL 14      NL 16
                   TTP BBO                 23916     39721     59583     111248    207075     275296
                   AIS  42                           39721     61351     120531     206434    298246
                                  42
                    Gap T T P BBO/AIS                 0%      -2.96%    -8.34%      0.30%    -8.33%
                   GA-Ch                   23916     39721     59583     112684     204052    293013
                                    20
                    Gap T T P BBO/Ch GA      0%       0%        0%       -1.29%     1.48 %    -6.43%
                    CLSM  6                23916     40621     61193     120655     206274    308413
                                    6
                    Gap T T P BBO/CLSM       0%     -2.26%    -2.70%    -8.45%      0.38%    -12.02%
                    CTSA  43               24467     41754     63277     116421     215665    288674
                                   43
                    Gap T T P BBO/CT SA   -2.30%    -5.11%    -6.19%    -4.64%      -4.14%    4.84%
                   AATTP  30                         47128     69958     125086     230874    300744
                                    30
                    Gap T T P BBO/AAT T P          -18.64% -17.45% -12.43%         -11.49%   -9.24%
                    VNS  25                23916     43112     61293     120906     207343    293645
                                  25
                    Gap T T P BBO/V NS       0%     -8.53%     -2.83%   -8.68%     -0.12%     -6.66%
                    GA  24                 23916     41505
                                 24
                    Gap T T P BBO/GA         0%     -4.34%
                    ANT-HYP  44            23916     40361     65168     123752     225169    321037
                                       44
                    Gap T T P BBO/ANT −HY P  0%     -1.61%    -9.73%    -11.23%     -8.37%   -16.61%
                    PSO-SA 45              23916     39721     62032     120036
                                    45
                    Gap T T P BBO/HHLA       0%       0%      -4.11%     -7.87%

            against several established approaches within the     The comparison presented in Table 6 high-
            NL instances. Specifically, we compared our ap-   lights the effectiveness of our approach relative to
            proach against the following well-known meth-     other methods. Our method shows an improve-
            ods : GA − Ch    20  (A novel method combining    ment over AIS TTP  42  and GA − Ch, 20  with an
            graph matching and evolutionary techniques for    average gap (AG) of -3.86% and -1.56%, respec-
                            42
            TTP), AIS TTP      (an immune-inspired method     tively (calculated using the gap operator defined
            developed within the CLONALG framework),          in formula 25, where Gap  TTP B BO/AIS  indicates
                   6
                                                       43
            CLSM (A cooperative local search); CTSA (a        the difference between our method and AIS TTP
            hybrid integer programming/constraint program-    for each instance). Additionally, our approach
            ming approach and a branch and price algorithm);  outperforms CLSM    6  with an average gap of -
            PSO −SA    45  (A metaheuristic approach integrat-  5.01%.
            ing swarm optimization (PSO) with simulated an-
            nealing (SA)); GA 24  (A genetic algorithm featur-    Our TTP B BO approach achieves a lower av-
            ing a novel encoding scheme for solution repre-   erage AATTP by -13.85%, further improving over
                               30
            sentation); AATTP (A 5.875-approximation Al-      GA and our previous method V NS, with reduc-
            gorithm for TTP); V NS  25  neighbourhood search  tions of -2.17% and -5.36%, respectively. More-
            combined; ANT −HY P     44  (A hyper-heuristic ap-  over, our method surpasses CTSA, ANT −HY P,
            proach inspired by ant algorithms).               and PSO − SA, yielding average improvements
                                                           277
   77   78   79   80   81   82   83   84   85   86   87