Page 107 - IJOCTA-15-3
P. 107

Application of Jumarie-Stancu collocation series method and multi-Step
            Methodology: Sayed Saber                          13. Saber S. Control of chaos in the Burke-Shaw
            Formal analysis: Sayed Saber, Brahim Dridi            system of fractal-fractional order in the sense
            Writing–original draft: Abdullah Alahmari,            of Caputo-Fabrizio. J Appl Math Comput Mech.
            Mohammed Messaoudi                                    2024;23(1):83-96.
            Writing–review & editing: All authors             14. Ahmed K, Adam H, Almutairi N, Saber S. Ana-
                                                                  lytical solutions for a class of variable-order frac-
                                                                  tional Liu system under time-dependent variable
                                                                  coefficients. Results Phys. 2024;56:107311.
            Availability of data                              15. Almutairi N, Saber S. On chaos control of
                                                                  nonlinear fractional Newton-Leipnik system via
            Not applicable.
                                                                  fractional Caputo-Fabrizio derivatives. Sci Rep.
                                                                  2023;13:22726.
            AI tools statement                                16. Almutairi N, Saber S, and Ahmad H. The fractal-
                                                                  fractional Atangana-Baleanu operator for pneu-
            All authors confirm that no AI tools were used in     monia disease: stability, statistical and numerical
            the preparation of this manuscript.                   analyses. AIMS Math. 2023;8(12):29382-29410.
                                                              17. Almutairi N, Saber S. Chaos control and
                                                                  numerical solution of time-varying fractional
            References
                                                                  Newton-Leipnik   system    using  fractional
              1. Zabidi NA, Majid ZA, Kilicman A, et al. Numer-   Atangana-Baleanu  derivatives.  AIMS  Math.
                ical solution of fractional differential equations  2023;8(11):25863-25887.
                with Caputo derivative by using numerical frac-  18. Petras I. Fractional-Order Nonlinear Systems:
                tional predict–correct technique. Adv Cont Discr  Modeling,  Analysis and Simulation. Berlin:
                Mod. 2022;2022:1-23.                              Springer; 2011.
              2. Podlubny I. Fractional Differential Equations.  19. Ahmed KIA, Adam HDS, Almutairi N, et al. An-
                San Diego: Academic Press; 1999.                  alytical solutions for a class of variable-order frac-
              3. Arena P, Caponetto R, Fortuna L, and Porto M.    tional Liu system under time-dependent variable
                Nonlinear Noninteger Order Circuits and Systems   coefficients. Results Phys. 2024;56:107311.
                – An Introduction. Singapore: World Scientific;  20. Alhazmi M, Dawalbait F, Aljohani A, et al.
                2000.                                             Numerical approximation method and chaos for
              4. Nisar KS, Farman M, Abdel-Aty, Ravichan-         a chaotic system in sense of Caputo-Fabrizio
                dran C. A review of fractional-order models       operator.  Thermal   Sci.  2024;28(6B):5161-
                for plant epidemiology. Prog Fract Differ Appl.   5168.
                2024;10:489-521.                              21. Almutairi N, Saber S. Chaos control and numer-
              5. Ahmed E, Elgazzar AS. On fractional order dif-   ical solution of time-varying fractional Newton-
                ferential equations model for nonlocal epidemics.  Leipnik  system  using  fractional  Atangana-
                Physica A. 2007;379(2):607-614.                   Baleanu derivatives. AIMS Math. 2023;8:25863-
              6. Li W, Wang Y, Cao J, Abdel-Aty M. Dynam-         25887.
                ics and backward bifurcations of SEI tuberculosis  22. Alsulami A, Alharb RA, Albbogami TM, et al.
                models in homogeneous and heterogeneous popu-     Controlled chaos of a fractal–fractional Newton-
                lations. J Math Anal Appl. 2025;543:128924.       Leipnik system. Thermal Sci. 2024;28(6B).
              7. Nisar KS, Farman M, Abdel-Aty M, Ravichan-   23. Alshehri MH, Saber S, and Duraihem FZ. Dy-
                dran C. A review of fractional order epidemic     namical analysis of fractional-order of IVGTT
                models for life sciences problems: past, present  glucose–insulin interaction. Int J Nonlin Sci Nu-
                and future. Alexandria Eng J. 2024;95:283-305.    mer Simul. 2023;24:1123-1140.
              8. Bagley RL, Calico RA. Fractional order state  24. Alshehri MH, Duraihem FZ, Alalyani A, et al.
                equations for the control of viscoelastically     A caputo (discretization) fractional-order model
                damped structures. J Guid Control Dyn. 1991;      of glucose-insulin interaction:  numerical solu-
                14:304-311.                                       tion and comparisons with experimental data. J
              9. Heaviside O. Electromagnetic Theory. New York:   Taibah Univ Sci. 2021;15:26-36.
                Chelsea Publishing Company; 1971.             25. Sayed Saber, Eihab Bashier, Alzahrani S., Noa-
             10. Kusnezov D, Bulgac A, Dang GD. Quantum L´evy     man IA. A mathematical model of glucose-insulin
                processes and fractional kinetics. Phys Rev Lett.  interaction with time delay. J. Appl Comput
                1999;82:1136-1139.                                Math. 2018;7(3):1-5.
             11. Almutairi N, Saber S. Existence of chaos and the  26. Ahmed KIA, Adam HDS, Yousiff MY, et al.
                approximate solution of the Lorenz–L¨u–Chen sys-  Different strategies for diabetes by mathemati-
                tem with the Caputo fractional operator. AIP      cal modeling: applications of fractal-fractional
                Adv. 2024;14:015112.                              derivatives in the sense of Atangana-Baleanu. Re-
             12. Hilfer R. Applications of Fractional Calculus in  sults Phys. 2023;26: 106892.
                Physics. Singapore: World Scientific; 2000:87-  27. Ahmed KIA, Adam HDS, Yousiff MY, et al. Dif-
                130.                                              ferent strategies for diabetes by mathematical
                                                           479
   102   103   104   105   106   107   108   109   110   111   112