Page 108 - IJOCTA-15-3
P. 108

Sayed Saber et.al. / IJOCTA, Vol.15, No.3, pp.464-482 (2025)

                modeling: modified minimal model. Alexandria  41. Caputo M, Fabrizio M. A new definition of frac-
                Eng J. 2023;80:74-87.                             tional derivative without singular kernel. Prog
             28. Derouich M, Boutayeb A. The effect of physical   Fract Differ Appl. 2015;1:73-85.
                exercise on the dynamics of glucose and insulin.  42. Nosrati K, Volos C. Bifurcation analysis and
                J Biomech. 2002;35(7): 911–917.                   chaotic behaviors of fractional-order singular bi-
             29. Mukhopadhyay A, DeGaetano A, Arino O. Mod-       ological systems. In: Pham VT, Vaidyanathan S,
                eling the intravenous glucose tolerance test: a   Volos C, Kapitaniak T, eds.Nonlinear Dynami-
                global study for a single-distributed-delay model.  cal Systems with Self-Excited and Hidden Attrac-
                Discrete Contin Dyn Syst Ser B. 2004;228(4):407-  tors Studies in Systems, Decision and Control,
                417.                                              vol. 133. Cham:Springer; 2018.
             30. Tornheim K. Are metabolic oscillations responsi-  43. Odibat ZM, Momani S. Modified homotopy
                ble for normal oscillatory insulin secretion? Dia-  perturbation method:  application to qua-
                betes. 1997;46(9):1375-1380.                      dratic Riccati differential equation of fractional
             31. Dalla Man C, Caumo A, Basu R, Rizza R, Tof-      order. Chaos Solitons Fractals. 2008;36:167-
                folo G, and Cobelli C. Minimal model estimation   174.
                of glucose absorption and insulin sensitivity from  44. Tsai P, Chen CK. An approximate analytic solu-
                oral test: Validation with a tracer method. Am    tion of the nonlinear Riccati differential equation.
                J Physiol Endocrinol Metab. 2004;287(4):E637-     J Franklin Inst. 2010;347: 1850-1862.
                E643.                                         45. Zeng DQ, Qin YM. The Laplace-Adomian-Pad´e
             32. Ahmed KIA, Mirgani SM, Seadawy A, et al. A       technique for the seepage flows with the Rie-
                comprehensive investigation of fractional glucose-  mann–Liouville derivatives. Commun Fract Calc.
                insulin dynamics: existence, stability, and numer-  2012;3:26-29.
                ical comparisons using residual power series and  46. Khan Y, Dibl´ık J, Faraz N, Smarda Z. An efficient
                generalized Runge–Kutta methods. J Taibah Univ    new perturbative Laplace method for space-time
                Sci. 2025;19(1):1-15.                             fractional telegraph equations. Adv Differ Equ.,
             33. Naik PA, Yeolekar BM, Qureshi S, et al. Global   2012;2012:204.
                analysis of a fractional-Order hepatitis B virus  47. Khan NA, Ara A, Khan NA. Fractional-order
                model under immune response in the presence of    Riccati differential equation: analytical approx-
                cytokines. Adv Theory Simul. 2024;7:2400726.      imation and numerical results. Adv Differ Equ.,
             34. Saber S, Alalyani A. Stability analysis and numer-  2013;2013:185.
                ical simulations of IVGTT glucose-insulin inter-  48. Odibat Z, Momani S. An algorithm for the numer-
                action models with two time delays. Math Model    ical solution of differential equations of fractional
                Anal. 2022;27:383-407.                            order. J Appl Math Inform. 2008;26:15-27.
             35. Haroon DS, Mohammed A, Safa MM, et al. An    49. Kataria KK, Vellaisamy P. Saigo space–time frac-
                application of Newton’s interpolation polynomials  tional Poisson process via Adomian decompo-
                to the zoonotic disease transmission between hu-  sition method. Stat Probab Lett. 2017;129:69-
                mans and baboons system based on a time-fractal   80
                fractional derivative with a power-law kernel. AIP  50. Haq F, Shah K, Rahman GU, Shahzad M.
                Adv. 2025;15(4):045217.                           Numerical solution of fractional-order smok-
             36. Danca MF. Lyapunov exponents of a discontin-     ing model via Laplace-Adomian decomposition
                uous 4D hyperchaotic system of integer or frac-   method. Alexandria Eng J. 2018;57:1061-1069.
                tional order. Entropy. 2018;20(5):337.        51. Sirisubtawee S, Kaewta S. New modified Ado-
             37. Zhuang P, Liu F, Anh V, and Turner I. Nu-        mian decomposition recursion schemes for solv-
                merical methods for the variable-order frac-      ing certain types of nonlinear fractional two-point
                tional advection-diffusion equation with a non-   boundary value problems. Int J Math Math Sci.
                linear source term. SIAM J Numer Anal,            2017;2017:1–20.
                2009;47(3):1760-1781.                         52. Liu Q, Liu J, Chen Y. Asymptotic limit cycle
             38. Almutairi N, Saber S. Application of a time-     of fractional Van der Pol oscillator by homotopy
                fractal fractional derivative with a power-law    analysis method and memory-free principle. Appl
                kernel to the Burke-Shaw system based on          Math Model. 2016;40(4): 3211-3220.
                Newton’s interpolation polynomials. MethodsX.  53. Freihat A, Momani S. Application of mul-
                2024;12:102510.                                   tistep  generalized  differential  transform
             39. G´omez-Aguilar JF. Chaos in a nonlinear Bloch    method for the solutions of the fractional-
                system with Atangana–Baleanu fractional deriva-   order Chua’s system. Discrete Dyn Nat Soc.
                tives.  Numer Methods Partial Differ Equ.         2012;2012:1–13.
                2018;34(5):1716-1738.                         54. Wang H, Yang D, Zhu S. A Petrov–Galerkin finite
             40. Atangana A, Baleanu D. New fractional deriva-    element method for variable-coefficient fractional
                tives with non-local and non-singular kernel: the-  diffusion equations. Comput Methods Appl. Mech
                ory and application to heat transfer model. Ther-  Eng. 2015;290:45-56.
                mal Sci. 2016;20:763-769.

                                                           480
   103   104   105   106   107   108   109   110   111   112   113