Page 108 - IJOCTA-15-3
P. 108
Sayed Saber et.al. / IJOCTA, Vol.15, No.3, pp.464-482 (2025)
modeling: modified minimal model. Alexandria 41. Caputo M, Fabrizio M. A new definition of frac-
Eng J. 2023;80:74-87. tional derivative without singular kernel. Prog
28. Derouich M, Boutayeb A. The effect of physical Fract Differ Appl. 2015;1:73-85.
exercise on the dynamics of glucose and insulin. 42. Nosrati K, Volos C. Bifurcation analysis and
J Biomech. 2002;35(7): 911–917. chaotic behaviors of fractional-order singular bi-
29. Mukhopadhyay A, DeGaetano A, Arino O. Mod- ological systems. In: Pham VT, Vaidyanathan S,
eling the intravenous glucose tolerance test: a Volos C, Kapitaniak T, eds.Nonlinear Dynami-
global study for a single-distributed-delay model. cal Systems with Self-Excited and Hidden Attrac-
Discrete Contin Dyn Syst Ser B. 2004;228(4):407- tors Studies in Systems, Decision and Control,
417. vol. 133. Cham:Springer; 2018.
30. Tornheim K. Are metabolic oscillations responsi- 43. Odibat ZM, Momani S. Modified homotopy
ble for normal oscillatory insulin secretion? Dia- perturbation method: application to qua-
betes. 1997;46(9):1375-1380. dratic Riccati differential equation of fractional
31. Dalla Man C, Caumo A, Basu R, Rizza R, Tof- order. Chaos Solitons Fractals. 2008;36:167-
folo G, and Cobelli C. Minimal model estimation 174.
of glucose absorption and insulin sensitivity from 44. Tsai P, Chen CK. An approximate analytic solu-
oral test: Validation with a tracer method. Am tion of the nonlinear Riccati differential equation.
J Physiol Endocrinol Metab. 2004;287(4):E637- J Franklin Inst. 2010;347: 1850-1862.
E643. 45. Zeng DQ, Qin YM. The Laplace-Adomian-Pad´e
32. Ahmed KIA, Mirgani SM, Seadawy A, et al. A technique for the seepage flows with the Rie-
comprehensive investigation of fractional glucose- mann–Liouville derivatives. Commun Fract Calc.
insulin dynamics: existence, stability, and numer- 2012;3:26-29.
ical comparisons using residual power series and 46. Khan Y, Dibl´ık J, Faraz N, Smarda Z. An efficient
generalized Runge–Kutta methods. J Taibah Univ new perturbative Laplace method for space-time
Sci. 2025;19(1):1-15. fractional telegraph equations. Adv Differ Equ.,
33. Naik PA, Yeolekar BM, Qureshi S, et al. Global 2012;2012:204.
analysis of a fractional-Order hepatitis B virus 47. Khan NA, Ara A, Khan NA. Fractional-order
model under immune response in the presence of Riccati differential equation: analytical approx-
cytokines. Adv Theory Simul. 2024;7:2400726. imation and numerical results. Adv Differ Equ.,
34. Saber S, Alalyani A. Stability analysis and numer- 2013;2013:185.
ical simulations of IVGTT glucose-insulin inter- 48. Odibat Z, Momani S. An algorithm for the numer-
action models with two time delays. Math Model ical solution of differential equations of fractional
Anal. 2022;27:383-407. order. J Appl Math Inform. 2008;26:15-27.
35. Haroon DS, Mohammed A, Safa MM, et al. An 49. Kataria KK, Vellaisamy P. Saigo space–time frac-
application of Newton’s interpolation polynomials tional Poisson process via Adomian decompo-
to the zoonotic disease transmission between hu- sition method. Stat Probab Lett. 2017;129:69-
mans and baboons system based on a time-fractal 80
fractional derivative with a power-law kernel. AIP 50. Haq F, Shah K, Rahman GU, Shahzad M.
Adv. 2025;15(4):045217. Numerical solution of fractional-order smok-
36. Danca MF. Lyapunov exponents of a discontin- ing model via Laplace-Adomian decomposition
uous 4D hyperchaotic system of integer or frac- method. Alexandria Eng J. 2018;57:1061-1069.
tional order. Entropy. 2018;20(5):337. 51. Sirisubtawee S, Kaewta S. New modified Ado-
37. Zhuang P, Liu F, Anh V, and Turner I. Nu- mian decomposition recursion schemes for solv-
merical methods for the variable-order frac- ing certain types of nonlinear fractional two-point
tional advection-diffusion equation with a non- boundary value problems. Int J Math Math Sci.
linear source term. SIAM J Numer Anal, 2017;2017:1–20.
2009;47(3):1760-1781. 52. Liu Q, Liu J, Chen Y. Asymptotic limit cycle
38. Almutairi N, Saber S. Application of a time- of fractional Van der Pol oscillator by homotopy
fractal fractional derivative with a power-law analysis method and memory-free principle. Appl
kernel to the Burke-Shaw system based on Math Model. 2016;40(4): 3211-3220.
Newton’s interpolation polynomials. MethodsX. 53. Freihat A, Momani S. Application of mul-
2024;12:102510. tistep generalized differential transform
39. G´omez-Aguilar JF. Chaos in a nonlinear Bloch method for the solutions of the fractional-
system with Atangana–Baleanu fractional deriva- order Chua’s system. Discrete Dyn Nat Soc.
tives. Numer Methods Partial Differ Equ. 2012;2012:1–13.
2018;34(5):1716-1738. 54. Wang H, Yang D, Zhu S. A Petrov–Galerkin finite
40. Atangana A, Baleanu D. New fractional deriva- element method for variable-coefficient fractional
tives with non-local and non-singular kernel: the- diffusion equations. Comput Methods Appl. Mech
ory and application to heat transfer model. Ther- Eng. 2015;290:45-56.
mal Sci. 2016;20:763-769.
480

