Page 182 - IJOCTA-15-4
P. 182

Oleiwi et al. / IJOCTA, Vol.15, No.4, pp.706-727 (2025)
            Table 9. Detailed features across controllers under the condition of a 10% increase in M c , an initial values set
            to (0.2, −0.5, −0.8) rad, and disturbance

                    Controller Link Rise time (s)   Settling time (s)      Overshoot (%)        ITSE
                                L1       0.160           5.360                 6.253           0.000762
                    Con-PID     L2       0.169           8.053                 23..950         0.006914
                                L3       0.208    https://doi.org/10.000       60.150          0.083883
                                L1       0.051    https://doi.org/10.000       39.320          0.004185
                    STNN–PID    L2       0.055           9.661                 27.969          0.041030
                                L3       1.097    https://doi.org/10.000       198.040         2.627539
                                L1       0.040           5.939                 11.895          0.000416
                    NN–PID      L2       0.460           6.156                 17.696          0.008044
                                L3       0.706    https://doi.org/10.000       61.250          0.065506
                    Abbreviations: Con-PID: Conventional proportional-integral-derivative control;
                    ITSE: Integral time square error; NN: Neural network; STNN: Self-tuning neural network.

            Author contributions                               4. Wanigasekara C, Swain A, Almakhles D, Zhou
                                                                  L. Design of delta–sigma-based PID controller for
            Conceptualization: Bashra Kadhim Oleiwi, Mo-
                                                                  networked wind energy conversion systems. IEEE
            hamed Jasim Mohamed, Ahmad Taher Azar,                Trans Ind Appl. 2022;58(1):879-889.
            Ahmed Redha Mahlous                                   https://doi.org/10.1109/TIA.2021.3126574
            Formal analysis: Bashra Kadhim Oleiwi, Mo-         5. Ahmed S, Azar AT, Tounsi M, Anjum Z. Tra-
            hamed Jasim Mohamed, Ahmad Taher Azar,                jectory tracking control of Euler–Lagrange sys-
            Ahmed Redha Mahlous, and Walid El-Shafai              tems using a fractional fixed-time method. Fractal
            Investigation: Bashra Kadhim Oleiwi, Mohamed          Fract. 2023;7(5):355.
            Jasim Mohamed, Ahmad Taher Azar, Ahmed                https://doi.org/10.3390/fractalfract7050355
            Redha Mahlous, and Walid El-Shafai                 6. Devaraj SV, Gunasekaran M, Sundaram E, et
                                                                  al. Robust queen bee assisted genetic algorithm
            Methodology: Bashra Kadhim Oleiwi, Mohamed
                                                                  (QBGA) optimized fractional order PID (FOPID)
            Jasim Mohamed, Ahmad Taher Azar, Ahmed
                                                                  controller for not necessarily minimum phase
            Redha Mahlous, and Walid El-Shafai
                                                                  power converters. IEEE Access. 2021;9:93331-
            Writing–original draft: Bashra Kadhim Oleiwi
                                                                  93337.
            Writing–review & editing: All authors                 https://doi.org/10.1109/ACCESS.2021.3091760
                                                               7. Mohamed MJ, Oleiwi BK, Abood LH, Azar AT,
            Availability of data                                  Hameed IA. Neural fractional order PID con-
                                                                  trollers design for 2-link rigid robot manipulator.
            The datasets generated and/or analyzed during         Fractal Fract. 2023;7(9):693.
            the current study are available from the corre-       https://doi.org/10.3390/fractalfract7090693
            sponding author upon reasonable request.           8. Saha A, Bhaskar MS, Almakhles D, Elmorshedy
                                                                  MF. Optimization of dual-stage controllers in
                                                                  renewable energy sources-based interconnected
            AI tools statement                                    power systems through refinement of the African
                                                                  Vultures Optimization Algorithm. Ain Shams
            All authors confirm that no AI tools were used in
                                                                  Eng J. 2024;15(11):103039.
            the preparation of this manuscript.
                                                                  https://doi.org/10.1016/j.asej.2024.103039
                                                               9. Mohammed A, Hossein M. Robust tracking con-
            References                                            trol of flexible manipulators using hybrid back-
                                                                  stepping/nonlinear reduced-order active distur-
              1. Elsisi M, Zaini HG, Mahmoud K, Bergies S,
                                                                  bance rejection control. ISA Trans. 2024;149:229-
                Ghoneim SSM. Improvement of trajectory track-
                                                                  236.
                ing by robot manipulator based on a new co-
                                                                  https://doi.org/10.1016/j.isatra.2024.04.026
                operative optimization algorithm. Mathematics.
                                                              10. Tlijani H, Jouila A, Nouri K. Wavelet neural net-
                2021;9(24):3231.
                                                                  work sliding mode control of two rigid joint robot
                https://doi.org/10.3390/math9243231
                                                                  manipulator. Adv Mech Eng. 2022;14(8):1-13.
              2. Baccouch M, Dodds S. A two-link robot manipu-
                                                                  https://doi.org/10.1177/16878132221119886
                lator: simulation and control design. Int J Robot
                                                              11. Bankole AT, Igbonoba EEC. Simulation-based
                Eng. 2020;5(2):1-17.
                                                                  novel hybrid proportional derivative/H-infinity
                https://doi.org/10.35840/2631-5106/4128
                                                                  controller design for improved trajectory track-
              3. Ahmed S, Ghous I, Mumtaz F. TDE based model-
                                                                  ing of a two-link robot arm. J Shanghai Jiaotong
                free control for rigid robotic manipulators under
                                                                  Univ (Sci). 2023;28:673-687.
                nonlinear friction. Sci Iran. 2024;31(2):137-148.
                                                                  https://doi.org/10.1007/s12204-023-2660-5
                https://doi.org/10.24200/sci.2022.57252.5141
                                                           724
   177   178   179   180   181   182   183   184   185   186   187