Page 66 - IJOCTA-15-4
P. 66
MN. Khan et.al. / IJOCTA, Vol.15, No.4, pp.594-609 (2025)
14. Baleanu D, Hajipour M, Jajarmi A. An accurate 28. Jang G-W, Kim Y Y, Choi K K. Remesh-free
finite difference formula for the numerical solu- shape optimization using the wavelet-Galerkin
tion of delay-dependent fractional optimal con- method. Int J Solids Struct. 2004;41(22-23):6465-
trol problems. Int J Optimiz Control Theor Appl. 6483.
2024;14(3):183-192. 29. Liu Y, Cen Z. Daubechies wavelet meshless
15. Abbas WS, El-wakad MT, Darwish RR. Finite el- method for 2-D elastic problems. Tsinghua Sci
ement modeling for two-dimensional wireless cap- Technol. 2008;13(5):605-608.
¨
sule endoscope manipulation system. Trends Adv 30. Lepik U. Solving PDEs with the aid of two-
Sci Technol. 2025;2(1): 2. dimensional haar wavelets. Comput Math Appl.
16. Masti I, Sayevand K, Jafari H. On analyzing two- 2011;61(7):1873-1879.
dimensional fractional order brain tumor model 31. D´ıaz L A, Mart´ın M T, Vampa V. Daubechies
based on orthonormal Bernoulli polynomials and wavelet beam and plate finite elements. Finite El-
Newton’s method. Int J Optimiz Control Theor ements Anal Des. 2009;45(3):200-209.
Appl. 2024;14(1):12-19. 32. Khan A A, Ahsan M, Ahmad I, Alwuthay-
17. Malagi NS, Veeresha P, Prasanna GD, Prasan- nani M. Enhanced resolution in solving first-order
nakumara BC, Prakasha DG. Novel approach for nonlinear differential equations with integral con-
nonlinear time-fractional Sharma–Tasso–Olver dition: a high-order wavelet approach. Eur Phys
equation using Elzaki transform. Int J Optimiz J Spec Top. 2024;2024:1-14.
Control Theor Appl. 2023;13(1):46-58. 33. Ahsan M, Khan A A, Dinibutun S, et al. The
18. Erdogan U, Ozis T. A smart nonstandard fi- haar wavelets based numerical solution of Rec-
nite difference scheme for second order nonlin- cati equation with integral boundary condition.
ear boundary value problems. J Comput Phys. Thermal Sci. 2023;27(1):93-100.
2011;230(17):6464-6474. 34. Shah K, Amin R, Abdeljawad T. Utiliza-
˘
˘
19. Mukhtarov O, C¸AVUS¸OGLU S, OLGAR H. Nu- tion of Haar wavelet collocation technique
merical solution of one boundary value problem for fractal-fractional order problem. Heliyon.
using finite difference method. Turk J Math Com- 2023;9(6):e17123.
put Sci. 2019;11:85-89. 35. Amin R, Shah K, Awais M, Mahariq I, Nisar KS,
20. Cheng F, Li W, Zhou Y, et al. admetSAR: a com- Sumelka W. Existence and solution of third-order
prehensive source and free tool for assessment of integro-differential equations via Haar wavelet
chemical ADMET properties. J Chem Inf Model. method. Fractals 2023;31(02):2340037.
2012;52(11):3099-3105. 36. Liu X, Ahsan M, Ahmad M, et al. Applications
21. Hoppe RH, Kieweg M. Adaptive finite element of haar wavelet-finite difference hybrid method
methods for mixed control-state constrained op- and its convergence for hyperbolic nonlinear Schr
timal control problems for elliptic boundary value ¨ o dinger equation with energy and mass conver-
problems. Comput Optimiz Appl. 2010;46:511- sion. Energies 2021;14(23):7831.
533. 37. Ahsan M, Lin S, Ahmad M, et al. A haar
22. Hesameddini E, Riahi M. Hybrid legendre wavelet-based scheme for finding the control pa-
block-pulse functions method for solving par- rameter in nonlinear inverse heat conduction
tial differential equations with non-local inte- equation. Open Phys. 2021;19(1): 722-734.
gral boundary conditions. J Inform Optimiz Sci. 38. Zhou S, He Z, Chen X, Chang W. An anomaly
2019;40(7):1391-1403. detection method for uav based on wavelet de-
23. Siraj-ul-Isalm, Aziz I, Ahmad M. Numerical solu- composition and stacked denoising autoencoder.
tion of two-dimensional elliptic PDEs with non- Aerospace. 2024;11(5):393.
Sarler B. The numerical solution of
local boundary conditions. Comput Math Appl. 39. Aziz I, ˇ
2015;69(3):180-205. second-order boundary-value problems by collo-
24. Ooi E H, Popov V. A simplified approach for cation method with the haar wavelets. Math Com-
imposing the boundary conditions in the lo- put Model. 2010;52(9-10):1577-1590.
cal boundary integral equation method. Comput 40. Tatari M, Dehghan M. On the solution of the
Mech. 2013;51(5):717-729. non-local parabolic partial differential equations
25. Kai Y, Yin Z. On the gaussian traveling wave via radial basis functions. Appl Math Model.,
solution to a special kind of schr¨odinger equation 2009;33(3):1729-1738.
with logarithmic nonlinearity. Mod Phys Lett B., 41. Ivanauskas F, Meˇskauskas T, Sapagovas M. Sta-
2022;36(02):2150543. bility of difference schemes for two-dimensional
26. Yang Y, Li H. Neural ordinary differential equa- parabolic equations with non-local boundary con-
tions for robust parameter estimation in dynamic ditions. Appl Math Comput. 2009;215(7):2716-
systems with physical priors. Appl Soft Comput. 2732.
2025;169:112649. 42. Sajaviˇcius S. Stability of the weighted split-
27. Chen Z, Wu J, Xu Y. Higher-order finite ting finite-difference scheme for a two-dimensional
volume methods for elliptic boundary value parabolic equation with two nonlocal integral con-
problems. Adv Comput Math. 2012;37(2):191- ditions. Comput Math Appl. 2012;64(11):3485-
253. 3499.
608

