Page 63 - IJOCTA-15-4
P. 63

Solving parabolic differential equations via Haar wavelets: A focus on integral boundary conditions





                      8                                          8

                      6                                          6
                      Solution  4                               Solution  4


                      2                                          2
                      0                                          0
                      1                                          1
                                                         1                                         1
                            0.5                                        0.5
                                                0.5                                       0.5
                            y                                          y                   x
                                    0  0        x                              0  0


                        Figure 6. 3D view of results of Test Problem 4, exact (left) and numerical (right)

                                                                                                      35
            Tables 6 and 7.                                   to an extremely large value of 7.5906 × 10 , cor-
                                                                                                 7
                                                              responding to a κ value of 7.5623×10 . Moreover,
            Table 6. The numerical results generated using    for ϑ = 10 and α = 10 the error becomes signifi-
            Haar wavelets for Test Problem 5 with dt = 0.0005                                 180
                                                              cantly larger, reaching 4.5071×10  , alongside a
            and T = 1                                                              7
                                                              κ value of 8.1231 × 10 . This suggests a complete
                                                              failure of the simulation at these parameter val-
                   ϑ = −10               ϑ = 0
              α      L ∞        κ         L ∞        κ        ues. Overall, the findings illustrate the impact of
             −10 7.8361e − 05 7.6785e + 07 2.3985e − 04 7.5307e + 07  parameter choices on solution behavior, empha-
             −03 2.3467e − 04 7.8718e + 07 8.2108e − 05 4.7640e + 07  sizing the importance of selecting suitable values
             −02 2.4293e − 04 7.7328e + 07 6.7607e − 05 4.6673e + 07
              00  2.6320e − 04 7.5864e + 07 8.5138e − 05 4.2737e + 07  to ensure numerical stability and precision. Addi-
              02  2.7061e − 04 7.6323e + 07 3.6215e − 04 4.3677e + 07  tional studies, such as evaluating the convergence
              03  2.7821e − 04 7.5311e + 07 2.5000e − 03 4.6090e + 07  of the method, could provide a deeper insight into
              10  5.3735e − 04 7.3153e + 07 7.5906e + 35 7.5623e + 07
                                                              the problem.
            Tables 6 and 7 display the error and condition        Figure 7 shows the numerical results of the
            number κ against various values of α and ϑ. All   proposed method in terms of the comparison be-
            simulations used parameters T=1 and dt =0.0005.   tween the L ∞ norm and the values of parameters
            The results indicate that, as expected, higher val-  α 1 and α 2 , while Figure 8 compares the exact and
            ues of α lead to increased error variability in the  numerical solutions.
            non-deterministic case due to the propagation of
            rounding errors. For a fixed α, larger values of
            ϑ also result in inaccuracies due to the enhanced  5. Conclusions
            stiffness phenomenon.
                                                              The aim of the article is to numerically solve
                                                              partial differential equations with integral bound-
                                                              ary conditions using the Haar wavelets collocation
            Table 7. The numerical results generated using
            Haar wavelets for Test Problem 5 with dt = 0.0005  method. It has investigated the method’s efficacy
            and T = 1                                         and accuracy concerning nonlocal parameters α
                                                              and ϑ.   The numerical findings have indicated
                    ϑ = 2                ϑ = 10               that the Haar wavelets approach has performed
              α      L ∞        κ         L ∞        κ        effectively and efficiently in addressing parabolic
             −50 3.2004e − 04 4.5696e + 08  3.4810e − 04  4.6848e + 08
             −30 2.7565e − 04 2.6229e + 08  3.5476e − 04  3.3919e + 08  differential equations with integral boundary con-
             −10 2.5726e − 04 5.2507e + 07  7.2413e − 04  8.5954e + 07  ditions, particularly when both α and ϑ have been
             −03 2.1362e − 04 4.7381e + 07  3.3986e + 13  7.7049e + 07  negative. However, convergence has failed for the
             −02 2.3705e − 04 4.5438e + 07  7.2951e + 19  7.5279e + 07  numerical methods when α and ϑ have exceeded
              00  3.6899e − 04 4.3639e + 07  7.7906e + 35  7.2383e + 07
              02  5.4200e − 02 4.3476e + 07  6.3430e + 55  7.3907e + 07  3. Maintaining α negative while keeping ϑ posi-
              03  4.2767e + 02 4.1867e + 07  2.5365e + 67  7.6128e + 07  tive with equal magnitude or ensuring α magni-
              10  6.3430e + 55 7.2669e + 07 4.5071e + 180 8.1231e + 07
                                                              tude has been greater than ϑ has enhanced ac-
                                                              curacy. The collocation method has guaranteed
                It is important to note from Tables 6 and 7,  that both the differential equation and integral
            that when ϑ = 0 and α = 10, the error escalates   boundary conditions have been met at designated
                                                           605
   58   59   60   61   62   63   64   65   66   67   68