Page 58 - IJOCTA-15-4
P. 58

MN. Khan et.al. / IJOCTA, Vol.15, No.4, pp.594-609 (2025)
                                                                1            1
                                                              Z           Z
            Equation (45) makes it simple to get the value       ϑs dκ =       ϑℑ 3 (L, t) dκ ⊗ 1 +
            of s y | y=0 . To do this, simply substitute L for 1  0         0
            in Equation (45), find s y | y=c , and then put this          Z  1
            value back in Equation (45). We get:                               ϑ(ℑ 4 (L, t) − ℑ 3 (L, t)) dκ ⊗ y +
                                                                            0
                                                                          Z  1
                                                                               ϑ dκ ⊗ ℜ 2 − yℜ T    ζ+
            s =(s(L, 0) ⊗ 1) + ((s(L, d) − s(L, 0)) ⊗ y)                    0
                + 1 ⊗ ℜ 2 − yℜ   T    ζ + L ⊗ ℜ 2 − yℜ T    ω         Z  1                  T
                                                                               ϑL dκ ⊗ ℜ 2 − yℜ      ω+
                + ℜ 2 ⊗ ℜ 2 − yℜ  T    µ,                                 0
                                                                          Z  1
                                                       (46)                                       T
                                                                               ϑℜ 2 dκ ⊗ ℜ 2 − yℜ     µ,
                                                                            0
                                                                                                         (50)
            where
                                                              where
                                                                                                     T
                                                    T         α = [α(κ 1 ), α(κ 2 ), α(κ 3 ), ..., , α(κ 2M )] ,
                 ℜ = ℜ 1,2 (1) ℜ 2,2 (1) ... ℜ 2M,2 (1)  .                                               (51)
                                                                                                     T
                                                                 ϑ = [ϑ(κ 1 ), ϑ(κ 2 ), ϑ(κ 3 ), ..., , ϑ(κ 2M )] .
                                                              The integral boundary conditions, denoted as
            In the same way, from Equation (44), we de-       Equations (33) and (34), result from multiplying
            rive:                                             α 1 by Equation (49) and α 2 by Equation (50).
                                                              After substituting these derived expressions into
            s =(1 ⊗ s(0, y)) + (L ⊗ (s(1, y) − s(0, y)))
                                                              Equation (47) and rearranging, we derive an al-




                +   ℜ 2 − Lℜ T  ⊗ 1 σ +    ℜ 2 − Lℜ T  ⊗ y δ ternative expression for s.

                +   ℜ 2 − Lℜ T    ⊗ ℜ 2 µ.                   s = ((1 − L) ⊗ ℑ 1 (y)) + (L ⊗ ℑ 2 (y)) +
                                                       (47)                 Z  1
                                                                   α 1 (1 − L)   αℑ 3 (L, t) dκ ⊗ 1 +
                                                                               0
            The expression below results from applying the            Z  1
            boundary conditions described by Equation (33)         Lα 2    ϑℑ 3 (L, t) dκ ⊗ 1 +
                                                                         0
            to Equation (34) within Equation (46).                          Z  1
                                                                   (1 − L) α 1   α(ℑ 4 (L, t) − ℑ 3 (L, t)) dκ ⊗ y +
                                                                               0
            s =(ℑ 3 (L, t) ⊗ 1) + ((ℑ 4 (L, t) − ℑ 3 (L, t)) ⊗ y)     Z  1
                + 1 ⊗ ℜ 2 − yℜ   T    ζ + L ⊗ ℜ 2 − yℜ T    ω  Lα 2  0  ϑ(ℑ 4 (L, t) − ℑ 3 (L, t)) dκ ⊗ y +
                                                                            Z  1

                + ℜ 2 ⊗ ℜ 2 − yℜ  T   µ,
                                                                   (1 − L) α 1   α dκ+
                                                       (48)                    0
                                  R  1                                  Z  1
            The     expressions     α(κ)s(κ, y, t) dκ   and                                 T
                                   0                              (L) α 2  ϑ dκ ⊗ ℜ 2 − yℜ    ζ +
            R  1  ϑ(κ)s(κ, y, t) dκ can be derived from Equa-            0
             0                                                              Z
            tion (48) and are presented as follows:                             1
                                                                   (1 − L) α 1   Lα dκ+
            Z  1        Z  1
                                                                               0
                αs dκ =      αℑ 3 (L, t) dκ ⊗ 1 +                       Z  1
              0            0                                               Lϑ dκ ⊗ ℜ 2 − yℜ  T   ω +
                                                                  (L) α 2
                            1                                            0
                        Z
                             α(ℑ 4 (L, t) − ℑ 3 (L, t)) dκ ⊗ y +                             T
                                                                                   1

                                                                               Z
                           0
                                                                     (1 − L) α 1     αℜ 2 dκ   +
                            1                                                    0
                        Z
                             α dκ ⊗ ℜ 2 − yℜ  T    ζ+
                           0                                            Z  1        T
                            1                                    (L) α 2    ϑℜ 2 dκ                  +
                        Z                                                             ⊗ ℜ 2 − yℜ T
                             αL dκ ⊗ ℜ 2 − yℜ  T    ω+                     0

                           0
                            1                                                  ⊗ ℜ 2
                        Z                                         ℜ 2 − Lℜ T          µ.
                             αℜ 2 dκ ⊗ ℜ 2 − yℜ  T   µ,
                           0                                                                             (52)
                                                       (49)
                                                           600
   53   54   55   56   57   58   59   60   61   62   63