Page 56 - IJOCTA-15-4
P. 56

MN. Khan et.al. / IJOCTA, Vol.15, No.4, pp.594-609 (2025)
                                                                                                1 − L
            After multiplying α(L) by Equation (24) and in-   s(L, t) =(1 − L)g 1 (t) + Lg 2 (t) +
            tegrating between 0 and 1, we obtain:                                            m 1 (1 − B 1 )

                                                                                    B 2 E 1
                                      1                                                     + g 2 (t) (B 2
                                    Z                                   g 1 (t) B 1 +
              D 1 (t) =(D 1 (t) + g 1 (t))  α(L) (1 − L) dκ+                        1 − E 2

                                     0                                    B 2 E 2        L
                                      1
                                    Z                                  +          +              E 1 g 1 (t)
                      (D 2 (t) + g 2 (t))  α(L)L dκ+                     1 − E 2    m 1 (1 − E 2 )

                                     0                                        B 1                  B 2 E 1
                         1
                      Z                                                 1 +          + g 2 (t) E 2 +
                          α(L) ℜ 2 − Lℜ  T  dκµ.                            1 − B 1                1 − B 1

                        0                                                         T      1 − L
                                                       (25)            + ℜ − Lℜ +                  ℜ ϑ +
                                                                                      m 1 (1 − B 1 )
                                                                                                       T

                                                                        B 2                    E 2
            Similarly,                                                       ℜ α − B 2 ℜ 1 +              µ
                                                                      1 − E 2                1 − E 2

                                       1                                       L               E 1
                                    Z
               D 2 (t) =(D 1 (t) + g 1 (t))  ϑ(L) (1 − L) dκ+          +   m 1 (1 − E 2 )  ℜ α +    ℜ ϑ
                                      0                                                      1 − B 1
                                                                                            T
                                       1                                           E 1 B 2
                                    Z
                      (D 2 (t) + g 2 (t))  ϑ(L)L dκ                    − ℜ E 2 +               µ.
                                      0                                           1 − B 1
                           1
                         Z                                                                               (29)
                       +    ϑ(L) ℜ 2 − Lℜ  T  dκµ.
                          0
                                                       (26)   From Equations (17) and (20), we obtain:
            From Equations (25) and (26), the values of D 1 (t)    s(L, t) − s(L, t 0 )
                                                                                   = γHµ + f(L, t).      (30)
            and D 2 (t) are calculated:                                   ∆t
                                                              Inserting from Equation (29) the value of s(L, t)
                                                              in Equation (30).

                          1                   B 2 E 1
            D 1 (t) =            g 1 (t) B 1 +        +                  T               1 − L          B 2
                     m 1 (1 − B 1 )          1 − E 2              ℜ − Lℜ − γ∆tH +                  ℜ ϑ       ℜ α
                                                                                      m 1 (1 − B 1 )  1 − E 2
                                                                                   T
                                                                            E 2               L
                              B 2 E 2             B 2           − B 2 ℜ 1 +           µ +               (ℜ α
                  g 2 (t) B 2 +       + ℜ ϑ +         ℜ α −                  1 − E 2        m 1 (1 − E 2 )
                             1 − E 2            1 − E 2
                                                                                                T


                                                                    E 1                  E 1 B 2
                              E 2                               +        ℜ ϑ − ℜ E 2 +            µ,
                  B 2 ℜ 1 +           µ,
                                                                   1 − B 1              1 − B 1
                            1 − E 2

                          1                   B 1                                          1 − L             .
            D 2 (t) =            E 1 g 1 (t) 1 +       +      = − (1 − L)g 1 (t) + Lg 2 (t) +           g 1 (t)
                     m 1 (1 − E 2 )           1 − B 1                                      m 1 (1 − B 1 )

                                                                       B 2 E 1                B 2 E 2
                                                                 B 1 +         + g 2 (t) B 2 +

                                                                       1 − E 2               1 − E 2
                              B 2 E 1             E 1
                  g 2 (t) E 2 +       + ℜ α +         ℜ ϑ −             L                   B 1
                             1 − B 1            1 − B 1         −                E 1 g 1 (t) 1 +      +
                                                                    m 1 (1 − E 2 )
                                                                                          1 − B 1
                           E 1 B 2
                  ℜ E 2 +            µ,
                                                                            B 2 E 1
                           1 − B 1                              g 2 (t) E 2 +           + s(L, t 0 ) + ∆tf(L, t).
                                                       (27)                1 − B 1
                                                                                                         (31)
                                                              Computing µ by solving this system of equations.
            where
                                                              Next, substitute µ in Equation (29), the approx-
                    Z  1                    Z  1
              B 1 =    ϑ(κ)(1 − κ) dκ, B 2 =    ϑ(κ)κ dκ,     imate solution.
                     0                       0
                    Z  1                    Z  1
              E 1 =    α(κ)(1 − κ) dκ, E 2 =    α(κ)κ dκ,
                     0                       0                3.3. 2D problem with integral BC
                      1                      1
                    Z                      Z
              ρ α =    α(κ)ℜ dκ,      ρ ϑ =   ϑ(κ)ℜ dκ,       Consider, 42
                     0                      0
                                                                            2      2
                                                                    ∂s      ∂ s    ∂ s
                             B 2 E 1
              m 1 = 1 −                 .                              =γ      2  +  2  + f(κ, y, t),
                        (1 − B 1 )(1 − E 1 )                        ∂t      ∂κ     ∂y                    (32)
                                                       (28)             0 < κ < 1,   0 < y < 1,
                                                           598
   51   52   53   54   55   56   57   58   59   60   61