Page 15 - IJPS-9-1
P. 15

International Journal of
            Population Studies                                 Local population changes as a spatial varying multiscale process



               internal mobility in Italy, 1995-2006: A comparison of Italians      https://doi.org/10.1007/s10109-022-00384-8
               and resident foreigners. Demographic Research, 29:407-440.
                                                               Preston, S.H., Heuveline, P., & Guillot, M. (2001). Demography:
               https://doi.org/10.4054/demres.2013.29.16          Measuring and Modeling Population Processes. Oxford:
                                                                  Blackwell Publishers.
            Li, Z., & Fotheringham, S. (2020). Computational improvements
               to multi-scale geographically weighted regression.   Raymer, J., Willekens, F., & Rogers, A. (2019). Spatial demography:
               International Journal of Geographical Information Science,   A unifying core and agenda for further research. Population,
               34(7):1378–1397.                                   Space and Place, 25(4):e2179.
               https://doi.org/10.1080/13658816.2020.1720692      https://doi.org/10.1002/psp.2179
            Lloyd, C.D. (2016). Are spatial inequalities growing? The scale   Reynaud, C., & Miccoli, S. (2018). Depopulation and the aging
               of population concentrations in England and Wales.   population: The relationship in Italian municipalities.
               Environment and Planning A, 48(7):1318-1336,       Sustainability, 10(4):1004.
               https://doi.org/10.1177/0308518X15621306           https://doi.org/10.3390/su10041004
            Matthews, S.A. (2019). Methods and applications in spatial   Reynaud, C., Miccoli, S., & Lagona, F. (2018). Population ageing
               demography. Mathematical Population Studies, 26(4):183-184.   in Italy: An empirical analysis of change in the ageing index
                                                                  across space and time. Spatial Demography, 6(3):235-251.
               https://doi.org/10.1080/08898480.2019.1653058
                                                                  https://doi.org/10.1007/s40980-018-0043-6
            Matthews, S.A., & Parker, D.M. (2013). Progress in spatial
               demography. Demographic Research, 28(10):271-312.   Reynaud, C., Miccoli, S., Benassi, F., Naccarato, A., & Salvati, L.
                                                                  (2020).  Unravelling  a  demographic  ‘Mosaic’:  Spatial
               https://doi.org/10.4054/demres.2013.28.10
                                                                  patterns and contextual factors of depopulation in
            Matthews, S.A., & Yang, T.C. (2012). Mapping the results of   Italian municipalities, 1981-2011.  Ecological Indicators,
               local  statistics:  Using  geographically  weighted  regression.   115:106356.
               Demographic Research, 26:151-166.
                                                                  https://doi.org/10.1016/j.ecolind.2020.106356
               https://doi.org/10.4054/DemRes.2012.26.6
                                                               Salvati, L., Benassi, F., Miccoli, S., Rabiei-Dastjerdi, H., &
            Mucciardi, M. (2021). Local and global analysis of fertility   Matthews, S.A. (2020). Spatial variability of total fertility
               rate in Italy. In: Popkova, E.G., & Sergi, B.S. (eds.)  Smart   rate and crude birth rate in a low-fertility country: Patterns
               Technologies for Society, State and Economy. Cham: Springer,   and trends in regional and local scale heterogeneity across
               p. 465–474.                                        Italy, 2002-2018. Applied Geography, 124:102321.
            Nakaya, T. (2015). Semiparametric geographically weighted   https://dx.doi.org/10.1016/j.apgeog.2020.102321
               generalized linear modelling: The concept and implementation
               using GWR4. In: Brunsdon, C., & Singleton, A. (eds.).   Song, J., Yu, H., & Lu, Y. (2021). Spatial-scale dependent risk
               Geocomputation: A Practical Primer. London: Sage, p.201-220.  factors of heat-related mortality: A multiscale geographically
                                                                  weighted regression analysis. Sustainable Cities and Society,
            Nakaya, T., Fotheringham, A.S., Brunsdon, C., & Charlton,  M.   74: 103159.
               (2005). Geographically weighted Poisson regression for disease
               association mapping. Statistics in Medicine, 24:2695-2717.      https://doi.org/10.1016/j.scs.2021.103159
                                                               Strozza, S., Benassi, F., Ferrara, R., & Gallo, G. (2016).
               https://doi.org/10.1002/sim.2129
                                                                  Recent demographic trends in the major Italian Urban
            Oshan, T.M., Li, Z., Kang, W., Wolf, L.J., & Fotheringham, A.S.   agglomerations: The role of foreigners. Spatial Demography,
               (2019). MGWR: A  Python implementation of multiscale   4(1): 39–70,
               geographically weighted regression for investigating process
               spatial heterogeneity and scale. ISPRS International Journal      https://doi.org/10.1007/s40980-015-0012-2
               of Geo-Information, 8(6):269.                   Vitali, A., & Billari, F.C. (2017). Changing determinants of low
                                                                  fertility and diffusion: A spatial analysis for Italy. Population,
               https://doi.org/10.3390/ijgi8060269
                                                                  Space and Place 23(2):e1998.
            Oshan, T.M., Smith, J.P., & Fotheringham, A.S. (2020). Targeting
               the spatial context of obesity determinants via multiscale      https://doi.org/10.1002/psp.1998
               geographically weighted regression. International Journal of   Voss, P.R. (2007). Demography as a spatial social science.
               Health Geography, 19(1):11.                        Population Research and Policy Review, 26(5):457-476.
               https://doi.org/10.1186/s12942-020-00204-6         https://doi.org/10.1007/s11113-007-9047-4
            Oshan, T.M., Wolf, L.J., Sachdeva, M., Bardin, S., & Fotheringham,   Weeks, J.R. (2004). The Role of Spatial Analysis in Demographic
               A.S. (2022). A scoping review on the multiplicity of scale in   Research. In: Goodchild, M.F., & Janelle, D.G. (eds.).
               spatial analysis. Journal of Geographical Systems, 24:293-324.   Spatially  Integrated  Social  Science. New  York: Oxford


            Volume 9 Issue 1 (2023)                         9                          https://doi.org/10.36922/ijps.393
   10   11   12   13   14   15   16   17   18   19   20