Page 55 - ITPS-7-1
P. 55

INNOSC Theranostics and
            Pharmacological Sciences                                                Anticancer activity of cyanobacteria



            45.  Trauner D, Shemet A, 2020, Discovery and total synthesis of   55.  Kwan JC, Taori K, Paul VJ, et al., 2009, Lyngbyastatins 8-10,
               anaenamides A and B. Synfacts, 16: 0982.           elastase inhibitors with cyclic depsipeptide scaffolds isolated
                                                                  from the marine cyanobacterium Lyngbya semiplena. Mar
            46.  Quintana J, Bayona LM, Castellanos L,  et al., 2014,
               Almiramide D, cytotoxic peptide from the marine    Drugs, 7: 528–538.
               cyanobacterium Oscillatoria nigroviridis. Bioorg Med Chem,      https://doi.org/10.3390/md7040528
               22: 6789–6795.
                                                               56.  Matthew S, Ross C, Rocca JR, et al., 2007, Lyngbyastatin 4,
               https://doi.org/10.1016/j.bmc.2014.10.039          a  dolastatin  13  analogue  with  elastase  and  chymotrypsin
            47.  Yu HB, Glukhov E, Li Y, et al., 2019, Cytotoxic microcolin   inhibitory activity from the marine cyanobacterium Lyngbya
               lipopeptides from the marine cyanobacterium  Moorea   confervoides. J Nat Prod, 70: 124–127.
               producens. J Nat Prod, 82: 2608–2619.              https://doi.org/10.1021/np060471k
               https://doi.org/10.1021/acs.jnatprod.9b00549    57.  Choi H, Mevers E, Byrum T,  et al., 2012, Lyngbyabellins
            48.  Meickle T, Matthew S, Ross C, et al., 2009, Bioassay-guided   K-N from two Palmyra atoll collections of the marine
               isolation and identification of desacetylmicrocolin B from   cyanobacterium Moorea bouillonii. European J Org Chem,
               Lyngbya cf. polychroa. Planta Med, 75: 1427–1430.  2012: 5141–5150.
               https://doi.org/10.1055/s-0029-1185675             https://doi.org/10.1002/ejoc.201200691
            49.  Ding L, Bar-Shalom R, Aharonovich D,  et al., 2021,   58.  Mondal A, Bose S, Banerjee S,  et al., 2020, Marine
               Metabolomic characterization of a cf.  Neolyngbya   Cyanobacteria and microalgae metabolites--a rich source of
               cyanobacterium from the South China sea reveals    potential anticancer drugs. Mar Drugs, 18: 476.
               wenchangamide a, a lipopeptide with  in vitro  apoptotic      https://doi.org/10.3390/md18090476
               potential in colon cancer cells. Mar Drugs, 19: 397.
                                                               59.  Baur P, Kühl M, Comba P, et al., 2022, Possible functional
               https://doi.org/10.3390/md19070397                 roles of patellamides in the ascidian-prochloron symbiosis.
            50.  Suntornchashwej S, Chaichit N, Isobe M,  et al., 2005,   Mar Drugs, 20: 119.
               Hectochlorin and morpholine derivatives from the Thai sea      https://doi.org/10.3390/md20020119
               hare, Bursatella leachii. J Nat Prod, 68: 951–955.
                                                               60.  Kawaguchi M, Satake M, Zhang BT,  et al., 2020, Neo-
               https://doi.org/10.1021/np0500124                  aplysiatoxin A isolated from Okinawan cyanobacterium
            51.  Marquez BL, Watts KS, Yokochi A, et al., 2002, Structure   Moorea producens. Molecules, 25: 457.
               and absolute stereochemistry of hectochlorin, a potent      https://doi.org/10.3390/molecules25030457
               stimulator of actin assembly. J Nat Prod, 65: 866–871.
                                                               61.  Ohno O, Iwasaki A, Same K,  et al., 2022, Isolation of
               https://doi.org/10.1021/np0106283                  caldorazole, a thiazole-containing polyketide with selective
            52.  Amin N, Kannaujiya VK,  2021, Metabolic pathways for   cytotoxicity under glucose-restricted conditions.  Org Lett,
               production of anticancer compounds in Cyanobacteria. In:   24: 4547–4551.
               Evolutionary Diversity as a Source for Anticancer Molecules.      https://doi.org/10.1021/acs.orglett.2c01566
               United States: Academic Press, p127–154.
                                                               62.  Kurisawa N, Iwasaki A, Teranuma K, et al., 2022, Structural
            53.  Cai W, Matthew S, Chen QY,  et al., 2018, Discovery of   determination, total synthesis, and biological activity of
               new A- and B-type laxaphycins with synergistic anticancer   iezoside, a highly potent Ca2+-ATPase inhibitor from the
               activity. Bioorg Med Chem, 26: 2310–2319.          marine cyanobacterium Leptochromothrix valpauliae. J Am
               https://doi.org/10.1016/j.bmc.2018.03.022          Chem Soc, 144: 11019–11032.
            54.  Perera RMTD, Herath KHINM, Sanjeewa KKA,  et al.,      https://doi.org/10.1021/jacs.2c04459
               2023, Recent reports on bioactive compounds from marine   63.  Wunder A, Rothemund M, Schobert R, 2018, Synthesis and
               Cyanobacteria in relation to human health applications R.   anticancer activity of the proposed structure of caldoramide,
               Life (Basel), 13: 1411.
                                                                  an N-peptidyltetramate from the cyanobacterium Caldora
               https://doi.org/10.3390/life1306141                penicillata. Tetrahedron, 74: 5138–5142.













            Volume 7 Issue 1 (2024)                         12                        https://doi.org/10.36922/itps.1388
   50   51   52   53   54   55   56   57   58   59   60