Page 84 - ITPS-7-3
P. 84

INNOSC Theranostics and
            Pharmacological Sciences                                             Enhancers and SEs in cancer treatment



               doi: 10.1038/s41596-019-0172-4                  107. Sztal TE, Stainier DY. Transcriptional adaptation:
                                                                  A mechanism underlying genetic robustness. Development.
            97.  Nagari A, Murakami S, Malladi VS, Kraus WL.
               Computational approaches for  mining  GRO-Seq data to   2020;147(15):dev186452.
               identify and characterize active enhancers.  Methods Mol      doi: 10.1242/dev.186452
               Biol. 2017;1468:121-138.                        108. Sarvari  P,  Rasouli  SJ,  Allanki  S,  et al.  The E3  ubiquitin-
               doi: 10.1007/978-1-4939-4035-6_10                  protein ligase Rbx1 regulates cardiac wall morphogenesis in
                                                                  zebrafish. Dev Biol. 2021;480:1-12.
            98.  Hah  N,  Murakami  S,  Nagari  A,  Danko  CG,  Kraus  WL.
               Enhancer transcripts mark active estrogen receptor binding      doi: 10.1016/j.ydbio.2021.07.019
               sites. Genome Res. 2013;23(8):1210-1223.        109. Frangoul H, Altshuler D, Cappellini MD,  et al. CRISPR-
               doi: 10.1101/gr.152306.112                         Cas9 gene editing for sickle cell disease and β-thalassemia.
                                                                  N Engl J Med. 2021;384(3):252-260.
            99.  Jia Q, Chen S, Tan Y, Li Y, Tang F. Oncogenic super-enhancer
               formation in tumorigenesis and its molecular mechanisms.      doi: 10.1056/NEJMoa2031054
               Exp Mol Med. 2020;52(5):713-723.                110. Sarvari P, Sarvari P, Ramírez-Díaz I, Mahjoubi F, Rubio K.
               doi: 10.1038/s12276-020-0428-7                     Advances of epigenetic biomarkers and epigenome
                                                                  editing for early diagnosis in breast cancer. Int J Mol Sci.
            100. Kravchuk EV, Ashniev GA, Gladkova MG,  et al.    2022;23(17):9521.
               Experimental validation and prediction of super-enhancers:
               Advances and challenges. Cells. 2023;12(8):1191.     doi: 10.3390/ijms23179521
               doi: 10.3390/cells12081191                      111. Sarvari P, Sarvari P. Mitochondria: The master regulator of
                                                                  aging. INNOSC Theranostics Pharmacol Sci. 2024;7(2):1726.
            101. Huang J, Liu X, Li D, et al. Dynamic control of enhancer
               repertoires drives lineage and stage-specific transcription      doi: 10.36922/itps.1726
               during hematopoiesis. Dev Cell. 2016;36(1):9-23.  112. Che W, Ye S, Cai A, Cui X, Sun Y. CRISPR-Cas13a targeting
               doi: 10.1016/j.devcel.2015.12.014                  the enhancer RNA-SMAD7e inhibits bladder cancer
                                                                  development both  in vitro and  in vivo.  Front Mol Biosci.
            102. Hay  D,  Hughes  JR,  Babbs  C,  et al.  Genetic  dissection   2020;7:607740.
               of the  α-globin super-enhancer  in vivo.  Nat Genet.
               2016;48(8):895-903.                                doi: 10.3389/fmolb.2020.607740
               doi: 10.1038/ng.3605                            113. Mill CP, Fiskus W, DiNardo CD,  et al. RUNX1-targeted
                                                                  therapy for AML expressing somatic or germline mutation
            103. Honnell V, Norrie JL, Patel AG,  et al. Identification of a   in RUNX1. Blood. 2019;134(1):59-73.
               modular  super-enhancer  in  murine  retinal  development.
               Nat Commun. 2022;13(1):253.                        doi: 10.1182/blood.2018893982
               doi: 10.1038/s41467-021-27924-y                 114. Vincent CA, Nissen I, Dakhel S, Hörnblad A, Remeseiro S.
                                                                  Epigenomic perturbation of novel EGFR enhancers reduces
            104. Claringbould A, Zaugg JB. Enhancers in disease: Molecular   the proliferative and invasive capacity of glioblastoma
               basis and emerging treatment strategies. Trends Mol Med.   and  increases  sensitivity  to  temozolomide.  BMC Cancer.
               2021;27(11):1060-1073.                             2023;23(1):945.
               doi: 10.1016/j.molmed.2021.07.012                  doi: 10.1186/s12885-023-11418-9
            105. Chen YL, Li XL, Li G,  et al. BRD4 inhibitor GNE987   115. Sarvari P, Sarvari P. Advances in nanoparticle-based drug
               exerts anti-cancer effects by targeting super-enhancers in   delivery in cancer treatment. Glob Transl Med. 2023;2:0394.
               neuroblastoma. Cell Biosci. 2022;12(1):33.
                                                                  doi: 10.36922/gtm.0394
               doi: 10.1186/s13578-022-00769-8
                                                               116. Huang CS, You X, Dai C, et al. Targeting super‐enhancers
            106. Housden BE, Muhar M, Gemberling M,  et al. Loss-of-  via  nanoparticle‐facilitated  BRD4  and  CDK7  inhibitors
               function genetic tools for animal models: Cross-species and   synergistically suppresses pancreatic ductal adenocarcinoma.
               cross-platform differences. Nat Rev Genet. 2017;18(1):24-40.  Adv Sci (Weinh). 2020;7(7):1902926.
               doi: 10.1038/nrg.2016.118                          doi: 10.1002/advs.201902926










            Volume 7 Issue 3 (2024)                         13                               doi: 10.36922/itps.3654
   79   80   81   82   83   84   85   86   87   88   89