Page 84 - ITPS-7-3
P. 84
INNOSC Theranostics and
Pharmacological Sciences Enhancers and SEs in cancer treatment
doi: 10.1038/s41596-019-0172-4 107. Sztal TE, Stainier DY. Transcriptional adaptation:
A mechanism underlying genetic robustness. Development.
97. Nagari A, Murakami S, Malladi VS, Kraus WL.
Computational approaches for mining GRO-Seq data to 2020;147(15):dev186452.
identify and characterize active enhancers. Methods Mol doi: 10.1242/dev.186452
Biol. 2017;1468:121-138. 108. Sarvari P, Rasouli SJ, Allanki S, et al. The E3 ubiquitin-
doi: 10.1007/978-1-4939-4035-6_10 protein ligase Rbx1 regulates cardiac wall morphogenesis in
zebrafish. Dev Biol. 2021;480:1-12.
98. Hah N, Murakami S, Nagari A, Danko CG, Kraus WL.
Enhancer transcripts mark active estrogen receptor binding doi: 10.1016/j.ydbio.2021.07.019
sites. Genome Res. 2013;23(8):1210-1223. 109. Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-
doi: 10.1101/gr.152306.112 Cas9 gene editing for sickle cell disease and β-thalassemia.
N Engl J Med. 2021;384(3):252-260.
99. Jia Q, Chen S, Tan Y, Li Y, Tang F. Oncogenic super-enhancer
formation in tumorigenesis and its molecular mechanisms. doi: 10.1056/NEJMoa2031054
Exp Mol Med. 2020;52(5):713-723. 110. Sarvari P, Sarvari P, Ramírez-Díaz I, Mahjoubi F, Rubio K.
doi: 10.1038/s12276-020-0428-7 Advances of epigenetic biomarkers and epigenome
editing for early diagnosis in breast cancer. Int J Mol Sci.
100. Kravchuk EV, Ashniev GA, Gladkova MG, et al. 2022;23(17):9521.
Experimental validation and prediction of super-enhancers:
Advances and challenges. Cells. 2023;12(8):1191. doi: 10.3390/ijms23179521
doi: 10.3390/cells12081191 111. Sarvari P, Sarvari P. Mitochondria: The master regulator of
aging. INNOSC Theranostics Pharmacol Sci. 2024;7(2):1726.
101. Huang J, Liu X, Li D, et al. Dynamic control of enhancer
repertoires drives lineage and stage-specific transcription doi: 10.36922/itps.1726
during hematopoiesis. Dev Cell. 2016;36(1):9-23. 112. Che W, Ye S, Cai A, Cui X, Sun Y. CRISPR-Cas13a targeting
doi: 10.1016/j.devcel.2015.12.014 the enhancer RNA-SMAD7e inhibits bladder cancer
development both in vitro and in vivo. Front Mol Biosci.
102. Hay D, Hughes JR, Babbs C, et al. Genetic dissection 2020;7:607740.
of the α-globin super-enhancer in vivo. Nat Genet.
2016;48(8):895-903. doi: 10.3389/fmolb.2020.607740
doi: 10.1038/ng.3605 113. Mill CP, Fiskus W, DiNardo CD, et al. RUNX1-targeted
therapy for AML expressing somatic or germline mutation
103. Honnell V, Norrie JL, Patel AG, et al. Identification of a in RUNX1. Blood. 2019;134(1):59-73.
modular super-enhancer in murine retinal development.
Nat Commun. 2022;13(1):253. doi: 10.1182/blood.2018893982
doi: 10.1038/s41467-021-27924-y 114. Vincent CA, Nissen I, Dakhel S, Hörnblad A, Remeseiro S.
Epigenomic perturbation of novel EGFR enhancers reduces
104. Claringbould A, Zaugg JB. Enhancers in disease: Molecular the proliferative and invasive capacity of glioblastoma
basis and emerging treatment strategies. Trends Mol Med. and increases sensitivity to temozolomide. BMC Cancer.
2021;27(11):1060-1073. 2023;23(1):945.
doi: 10.1016/j.molmed.2021.07.012 doi: 10.1186/s12885-023-11418-9
105. Chen YL, Li XL, Li G, et al. BRD4 inhibitor GNE987 115. Sarvari P, Sarvari P. Advances in nanoparticle-based drug
exerts anti-cancer effects by targeting super-enhancers in delivery in cancer treatment. Glob Transl Med. 2023;2:0394.
neuroblastoma. Cell Biosci. 2022;12(1):33.
doi: 10.36922/gtm.0394
doi: 10.1186/s13578-022-00769-8
116. Huang CS, You X, Dai C, et al. Targeting super‐enhancers
106. Housden BE, Muhar M, Gemberling M, et al. Loss-of- via nanoparticle‐facilitated BRD4 and CDK7 inhibitors
function genetic tools for animal models: Cross-species and synergistically suppresses pancreatic ductal adenocarcinoma.
cross-platform differences. Nat Rev Genet. 2017;18(1):24-40. Adv Sci (Weinh). 2020;7(7):1902926.
doi: 10.1038/nrg.2016.118 doi: 10.1002/advs.201902926
Volume 7 Issue 3 (2024) 13 doi: 10.36922/itps.3654

