Page 34 - ITPS-8-1
P. 34

INNOSC Theranostics and
            Pharmacological Sciences                                              Transcriptome-based RNA sequencing



            7.   Filer  A,  Ward  LS, Kemble  S,  et al.  Identification of  a   mechanisms  in  patients  with  autoimmune  hepatitis:
               transitional fibroblast function in very early rheumatoid   A single-cell RNA sequencing analysis. Med Mol Morphol.
               arthritis. Ann Rheum Dis. 2017;76(12):2105-2112.   2024;57:110-123.
               doi: 10.1136/annrheumdis-2017-211286               doi: 10.1007/s00795-024-00380-5
            8.   Jezernik G, Gorenjak M, Potočnik, U. Gene ontology analysis   19.  Zhang X, Chao P, Zhang L,  et al. Single-cell RNA and
               highlights biological processes influencing non-response to   transcriptome sequencing profiles identify immune-
               anti-TNF therapy in rheumatoid arthritis.  Biomedicines.   associated key genes in the development of diabetic kidney
               2022;10(8):1808.                                   disease. Front Immunol. 2023;14:1030198.
               doi: 10.3390/biomedicines10081808                  doi: 10.3389/fimmu.2023.1030198
            9.   Lin  YJ,  Anzaghe  M,  Schülke, S.  Update on  the   20.  Zhang D, Li Y, Du C,  et al. Evidence of pyroptosis and
               pathomechanism, diagnosis, and treatment options for   ferroptosis extensively involved in autoimmune diseases
               rheumatoid arthritis. Cells. 2020;9(4):880.        at the single-cell transcriptome level.  J  Transl Med.
                                                                  2022;20(1):363.
               doi: 10.3390/cells9040880
                                                                  doi: 10.1186/s12967-022-03566-6
            10.  Chambers DC, Carew AM, Lukowski SW, Powell JE.
               Transcriptomics  and  single‐cell  RNA‐sequencing.  21.  Xu K, Wang R, Xie H,  et al. Single-cell RNA sequencing
               Respirology. 2019;24(1):29-36.                     reveals cell heterogeneity and transcriptome profile of breast
                                                                  cancer lymph node metastasis. Oncogenesis. 2021;10:66.
               doi: 10.1111/resp.13412
                                                                  doi: 10.1038/s41389-021-00355-6
            11.  Dong Z, Chen Y. Transcriptomics: Advances and approaches.
               Sci China Life Sci. 2013;56:960-967.            22.  You Y, Zhao X, Wu Y, et al. Integrated transcriptome profiling
                                                                  revealed that elevated long non-coding RNA-AC007278. 2
               doi: 10.1007/s11427-013-4557-2
                                                                  expression repressed CCR7 transcription in systemic lupus
            12.  Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T.   erythematosus. Front Immunol. 2021;12:615859.
               Transcriptomics technologies.  PLoS Computational Biol.
               2017;13(5):e1005457.                               doi: 10.3389/fimmu.2021.615859
                                                               23.  Li CX, Chen J, Lv SK, Li JH, Li LL, Hu X. Whole‐
               doi: 10.1371/journal.pcbi.1005457
                                                                  transcriptome RNA sequencing reveals significant
            13.  Draghici S, Khatri P, Eklund AC, Szallasi Z. Reliability and   differentially expressed mRNAs, miRNAs, and lncRNAs
               reproducibility issues in DNA microarray measurements.   and related regulating biological pathways in the peripheral
               TRENDS Genet. 2006;22(2):101-109.                  blood of COVID‐19  patients.  Mediators Inflamm.
               doi: 10.1016/j.tig.2005.12.005                     2021;2021(1):6635925.
            14.  Qian X, Ba Y, Zhuang Q, Zhong G. RNA-Seq technology      doi: 10.1155/2021/6635925
               and  its application  in  fish transcriptomics.  OMICS.   24.  Chen T, Yang S, Xu J, Lu W, Xie X. Transcriptome sequencing
               2014;18(2):98-110.                                 profiles of cervical cancer tissues and SiHa cells. Funct Integr
                                                                  Genomics. 2020;20:211-221.
               doi: 10.1089/omi.2013.0110
                                                                  doi: 10.1007/s10142-019-00706-y
            15.  Kulkarni A, Anderson AG, Merullo DP, Konopka G. Beyond
               bulk: A review of single cell transcriptomics methodologies   25.  Mao Y, Shen J, Lu Y, et al. RNA sequencing analyses reveal
               and applications. Curr Opin Biotechnol. 2019;58:129-136.  novel differentially expressed genes and pathways in
               doi: 10.1016/j.copbio.2019.03.001                  pancreatic cancer. Oncotarget. 2017;8(26):42537-42547.
            16.  Sumitomo S, Nagafuchi Y, Tsuchida Y, et al. Transcriptome      doi: 10.18632/oncotarget.16451
               analysis of peripheral blood from patients with rheumatoid   26.  Eswaran J, Cyanam D, Mudvari P,  et  al. Transcriptomic
               arthritis: A systematic review. Inflamm Regen. 2018;38:21.  landscape of breast cancers through mRNA sequencing. Sci
                                                                  Rep. 2012;2(1):264.
               doi: 10.1186/s41232-018-0078-5
                                                                  doi: 10.1038/srep00264
            17.  Liu F, Wang Z, Niu D, et al. Single-Cell RNA sequencing
               transcriptomics revealed HCMV IE2-related microglia   27.  Anaparti V, Wiens D, O’Neil LJ,  et al. Utility of baseline
               responses in Alzheimer’s-like disease in transgenic mice.   transcriptomic  analysis  of  rheumatoid  arthritis  synovium
               Mol Neurobiol. 2024;61(3):1331-1345.               as an indicator for long-term clinical outcomes. Front Med.
                                                                  2022;9:823244.
               doi: 10.1007/s12035-023-03553-y
                                                                  doi: 10.3389/fmed.2022.823244
            18.  Abe K, Abe N, Sugaya T, et al. Characteristics of peripheral
               blood mononuclear cells and potential related molecular   28.  Song X, Lin Q. Genomics, transcriptomics and proteomics


            Volume 8 Issue 1 (2025)                         28                               doi: 10.36922/itps.4449
   29   30   31   32   33   34   35   36   37   38   39