Page 49 - ITPS-8-1
P. 49
INNOSC Theranostics and
Pharmacological Sciences Ketamine for cocaine use disorder
cortex Drd1 neurons produces rapid and long-lasting doi: 10.1038/s41398-024-02988-8
antidepressant effects. Nat Commun. 2019;10(1):223.
65. Weiss T, Veh RW. Morphological and electrophysiological
doi: 10.1038/s41467-018-08168-9 characteristics of neurons within identified subnuclei
of the lateral habenula in rat brain slices. Neuroscience.
56. Galvanho JP, Manhães AC, Carvalho-Nogueira ACC, 2011;172:74-93.
Silva JM, Filgueiras CC, Abreu-Villaça Y. Profiling of
behavioral effects evoked by ketamine and the role of doi: 10.1016/j.neuroscience.2010.10.047
5HT2 and D2 receptors in ketamine-induced locomotor 66. Yang Y, Cui Y, Sang K, et al. Ketamine blocks bursting in
sensitization in mice. Prog Neuropsychopharmacol Biol the lateral habenula to rapidly relieve depression. Nature.
Psychiatry. 2020;97:109775. 2018;554(7692):317-322.
doi: 10.1016/j.pnpbp.2019.109775 doi: 10.1038/nature25509
57. Bock R, Shin JH, Kaplan AR, et al. Strengthening the 67. Cui Y, Yang Y, Ni Z, et al. Astroglial Kir4.1 in the lateral
accumbal indirect pathway promotes resilience to habenula drives neuronal bursts in depression. Nature.
compulsive cocaine use. Nat Neurosci. 2013;16(5):632-638. 2018;554(7692):323-327.
doi: 10.1038/nn.3369 doi: 10.1038/nature25752
58. Hanada T. Ionotropic glutamate receptors in epilepsy: 68. Cui Y, Hu S, Hu H. Lateral habenular burst firing as a target
A review focusing on AMPA and NMDA receptors. of the rapid antidepressant effects of ketamine. Trends
Biomolecules. 2020;10(3):464. Neurosci. 2019;42(3):179-191.
doi: 10.3390/biom10030464 doi: 10.1016/j.tins.2018.12.002
59. Cavalleri L, Merlo Pich E, Millan MJ, et al. Ketamine 69. Ma S, Chen M, Jiang Y, et al. Sustained antidepressant effect
enhances structural plasticity in mouse mesencephalic and of ketamine through NMDAR trapping in the LHb. Nature.
human iPSC-derived dopaminergic neurons via AMPAR- 2023;622(7984):802-809.
driven BDNF and mTOR signaling. Mol Psychiatry. doi: 10.1038/s41586-023-06624-1
2018;23(4):812-823.
70. Meye FJ, Valentinova K, Lecca S, et al. Cocaine-evoked
doi: 10.1038/mp.2017.241
negative symptoms require AMPA receptor trafficking in
60. El Iskandrani KS, Oosterhof CA, El Mansari M, Blier P. the lateral habenula. Nat Neurosci. 2015;18(3):376-378.
Impact of subanesthetic doses of ketamine on AMPA- doi: 10.1038/nn.3923
mediated responses in rats: An in vivo electrophysiological
study on monoaminergic and glutamatergic neurons. 71. Diering GH, Heo S, Hussain NK, Liu B, Huganir RL.
J Psychopharmacol (Oxf). 2015;29(7):792-801. Extensive phosphorylation of AMPA receptors in neurons.
Proc Natl Acad Sci. 2016;113(33):E4920-E4927.
doi: 10.1177/0269881115573809
doi: 10.1073/pnas.1610631113
61. Liu Y, Lin D, Wu B, Zhou W. Ketamine abuse potential and
use disorder. Brain Res Bull. 2016;126:68-73. 72. Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction.
Behav Brain Res. 2015;279:240-254.
doi: 10.1016/j.brainresbull.2016.05.016
doi: 10.1016/j.bbr.2014.11.018
62. Sun Z, Ma Y, Xie L, et al. Behavioral changes and neuronal
damage in rhesus monkeys after 10 weeks of ketamine 73. Brunoni AR, Lopes M, Fregni F. A systematic review and meta-
administration involve prefrontal cortex dopamine analysis of clinical studies on major depression and BDNF
D2 receptor and dopamine transporter. Neuroscience. levels: Implications for the role of neuroplasticity in depression.
2019;415:97-106. Int J Neuropsychopharmacol. 2008;11(8):1169-1180.
doi: 10.1016/j.neuroscience.2019.07.022 doi: 10.1017/S1461145708009309
63. Wu M, Minkowicz S, Dumrongprechachan V, Hamilton P, 74. Miuli A, d’Andrea G, Pettorruso M, et al. From a cycle to
Kozorovitskiy Y. Ketamine rapidly enhances glutamate- a period: The potential role of BDNF as plasticity and
evoked dendritic spinogenesis in medial prefrontal cortex phase-specific biomarker in cocaine use disorder. Curr
through dopaminergic mechanisms. Biol Psychiatry. Neuropharmacol. 2022;20(11):2024-2028.
2021;89(11):1096-1105. doi: 10.2174/1570159X20666220114152052
doi: 10.1016/j.biopsych.2020.12.022 75. Pianca TG, Rosa RL, Ceresér KMM, et al. Differences in
64. Abdel-Hay N, Kabirova M, Yaka R. A discrete subpopulation biomarkers of crack-cocaine adolescent users before/after
of PFC-LHb neurons govern cocaine place preference. abstinence. Drug Alcohol Depend. 2017;177:207-213.
Transl Psychiatry. 2024;14(1):1-11. doi: 10.1016/j.drugalcdep.2017.03.043
Volume 8 Issue 1 (2025) 43 doi: 10.36922/itps.4458

