Page 49 - ITPS-8-1
P. 49

INNOSC Theranostics and
            Pharmacological Sciences                                                 Ketamine for cocaine use disorder



               cortex Drd1 neurons produces rapid and long-lasting      doi: 10.1038/s41398-024-02988-8
               antidepressant effects. Nat Commun. 2019;10(1):223.
                                                               65.  Weiss T, Veh RW. Morphological and electrophysiological
               doi: 10.1038/s41467-018-08168-9                    characteristics of neurons within identified subnuclei
                                                                  of the lateral habenula in rat brain slices.  Neuroscience.
            56.  Galvanho  JP,  Manhães  AC,  Carvalho-Nogueira  ACC,   2011;172:74-93.
               Silva   JM, Filgueiras CC, Abreu-Villaça Y. Profiling of
               behavioral effects evoked by ketamine and the role of      doi: 10.1016/j.neuroscience.2010.10.047
               5HT2 and D2 receptors in ketamine-induced locomotor   66.  Yang Y, Cui Y, Sang K, et al. Ketamine blocks bursting in
               sensitization  in  mice.  Prog Neuropsychopharmacol Biol   the lateral habenula to rapidly relieve depression.  Nature.
               Psychiatry. 2020;97:109775.                        2018;554(7692):317-322.
               doi: 10.1016/j.pnpbp.2019.109775                   doi: 10.1038/nature25509
            57.  Bock R, Shin JH, Kaplan AR,  et al. Strengthening the   67.  Cui Y, Yang Y, Ni Z, et al. Astroglial Kir4.1 in the lateral
               accumbal indirect pathway promotes resilience to   habenula drives neuronal bursts in depression.  Nature.
               compulsive cocaine use. Nat Neurosci. 2013;16(5):632-638.  2018;554(7692):323-327.
               doi: 10.1038/nn.3369                               doi: 10.1038/nature25752
            58.  Hanada T. Ionotropic  glutamate receptors in  epilepsy:   68.  Cui Y, Hu S, Hu H. Lateral habenular burst firing as a target
               A  review  focusing  on  AMPA  and  NMDA  receptors.   of the rapid antidepressant effects of ketamine.  Trends
               Biomolecules. 2020;10(3):464.                      Neurosci. 2019;42(3):179-191.
               doi: 10.3390/biom10030464                          doi: 10.1016/j.tins.2018.12.002
            59.  Cavalleri L, Merlo Pich E, Millan MJ,  et al. Ketamine   69.  Ma S, Chen M, Jiang Y, et al. Sustained antidepressant effect
               enhances structural plasticity in mouse mesencephalic and   of ketamine through NMDAR trapping in the LHb. Nature.
               human iPSC-derived dopaminergic neurons via AMPAR-  2023;622(7984):802-809.
               driven BDNF and mTOR signaling.  Mol Psychiatry.      doi: 10.1038/s41586-023-06624-1
               2018;23(4):812-823.
                                                               70.  Meye FJ, Valentinova K, Lecca S,  et al. Cocaine-evoked
               doi: 10.1038/mp.2017.241
                                                                  negative symptoms require AMPA receptor trafficking in
            60.  El Iskandrani KS, Oosterhof CA, El Mansari M, Blier P.   the lateral habenula. Nat Neurosci. 2015;18(3):376-378.
               Impact of subanesthetic doses of ketamine on AMPA-     doi: 10.1038/nn.3923
               mediated responses in rats: An in vivo electrophysiological
               study on monoaminergic and glutamatergic neurons.   71.  Diering GH, Heo S, Hussain NK, Liu B, Huganir RL.
               J Psychopharmacol (Oxf). 2015;29(7):792-801.       Extensive phosphorylation of AMPA receptors in neurons.
                                                                  Proc Natl Acad Sci. 2016;113(33):E4920-E4927.
               doi: 10.1177/0269881115573809
                                                                  doi: 10.1073/pnas.1610631113
            61.  Liu Y, Lin D, Wu B, Zhou W. Ketamine abuse potential and
               use disorder. Brain Res Bull. 2016;126:68-73.   72.  Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction.
                                                                  Behav Brain Res. 2015;279:240-254.
               doi: 10.1016/j.brainresbull.2016.05.016
                                                                  doi: 10.1016/j.bbr.2014.11.018
            62.  Sun Z, Ma Y, Xie L, et al. Behavioral changes and neuronal
               damage  in  rhesus  monkeys  after  10  weeks  of  ketamine   73.  Brunoni AR, Lopes M, Fregni F. A systematic review and meta-
               administration involve prefrontal cortex dopamine   analysis of clinical studies on major depression and BDNF
               D2 receptor and dopamine transporter.  Neuroscience.   levels: Implications for the role of neuroplasticity in depression.
               2019;415:97-106.                                   Int J Neuropsychopharmacol. 2008;11(8):1169-1180.
               doi: 10.1016/j.neuroscience.2019.07.022            doi: 10.1017/S1461145708009309
            63.  Wu M, Minkowicz S, Dumrongprechachan V, Hamilton  P,   74.  Miuli A, d’Andrea G, Pettorruso M, et al. From a cycle to
               Kozorovitskiy Y. Ketamine rapidly enhances glutamate-  a period: The potential role of BDNF as plasticity and
               evoked dendritic spinogenesis in medial prefrontal cortex   phase-specific biomarker in cocaine use disorder.  Curr
               through dopaminergic mechanisms.  Biol Psychiatry.   Neuropharmacol. 2022;20(11):2024-2028.
               2021;89(11):1096-1105.                             doi: 10.2174/1570159X20666220114152052
               doi: 10.1016/j.biopsych.2020.12.022             75.  Pianca  TG,  Rosa  RL,  Ceresér  KMM,  et al.  Differences  in
            64.  Abdel-Hay N, Kabirova M, Yaka R. A discrete subpopulation   biomarkers of crack-cocaine adolescent users before/after
               of PFC-LHb neurons govern cocaine place preference.   abstinence. Drug Alcohol Depend. 2017;177:207-213.
               Transl Psychiatry. 2024;14(1):1-11.                doi: 10.1016/j.drugalcdep.2017.03.043


            Volume 8 Issue 1 (2025)                         43                               doi: 10.36922/itps.4458
   44   45   46   47   48   49   50   51   52   53   54