Page 71 - JCTR-11-5
P. 71
Journal of Clinical and
Translational Research Metabolism of healthy and leukemic stem cells
78. Harayama T, Riezman H. Understanding the diversity doi: 10.1084/jem.20180421
of membrane lipid composition. Nat Rev Mol Cell Biol. 90. Kuntz EM, Baquero P, Michie AM, et al. Targeting
2018;19(5):281-296.
mitochondrial oxidative phosphorylation eradicates
doi: 10.1038/nrm.2017.138 therapy-resistant chronic myeloid leukemia stem cells. Nat
Med. 2017;23(10):1234-1240.
79. Chen W, Zhao H, Li Y. Mitochondrial dynamics in health
and disease: Mechanisms and potential targets. Signal doi: 10.1038/nm.4399
Transduct Target Ther. 2023;8(1):333.
91. Liu L, Wise DR, Diehl JA, Simon MC. Hypoxic reactive
doi: 10.1038/s41392-023-01547-9 oxygen species regulate the integrated stress response and
cell survival. J Biol Chem. 2008;283(45):31153-31162.
80. Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal
and tumor stem cells. Adv Cancer Res. 2014;122:1-67. doi: 10.1074/jbc.M805056200
doi: 10.1016/B978-0-12-420117-0.00001-3 92. Nwosu GO, Powell JA, Pitson SM. Targeting the integrated
stress response in hematologic malignancies. Exp Hematol
81. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB.
Oxidative stress, inflammation, and cancer: How are they Oncol. 2022;11(1):94.
linked? Free Radic Biol Med. 2010;49(11):1603-1616. doi: 10.1186/s40164-022-00348-0
doi: 10.1016/j.freeradbiomed.2010.09.006 93. Takao S, Morell V, Uni M, et al. Epigenetic mechanisms
controlling human leukemia stem cells and therapy
82. Pickles S, Vigie P, Youle RJ. Mitophagy and quality control
mechanisms in mitochondrial maintenance. Curr Biol. resistance. Nat Commun. 2025;16(1):3196.
2018;28(4):R170-R185. doi: 10.1038/s41467-025-58370-9
doi: 10.1016/j.cub.2018.01.004 94. Le HT, Yu J, Ahn HS, et al. eIF2α phosphorylation-ATF4
axis-mediated transcriptional reprogramming mitigates
83. Jomova K, Raptova R, Alomar SY, et al. Reactive oxygen
species, toxicity, oxidative stress, and antioxidants: Chronic mitochondrial impairment during ER stress. Mol Cells.
diseases and aging. Arch Toxicol. 2023;97(10):2499-2574. 2025;48(2):100176.
doi: 10.1016/j.mocell.2024.100176
doi: 10.1007/s00204-023-03562-9
95. Shi X, Jiang Y, Kitano A, et al. Nuclear NAD homeostasis
+
84. Kulkarni CA, Brookes PS. Cellular compartmentation and
the redox/nonredox functions of NAD. Antioxid Redox governed by NMNAT1 prevents apoptosis of acute myeloid
Signal. 2019;31(9):623-642. leukemia stem cells. Sci Adv. 2021;7(30):eabf3895.
doi: 10.1126/sciadv.abf3895
doi: 10.1089/ars.2018.7722
96. Amaya ML, Inguva A, Pei S, et al. The STAT3-MYC axis
85. Ye H, Adane B, Khan N, et al. Leukemic stem cells evade
chemotherapy by metabolic adaptation to an adipose tissue promotes survival of leukemia stem cells by regulating
niche. Cell Stem Cell. 2016;19(1):23-37. SLC1A5 and oxidative phosphorylation. Blood.
2022;139(4):584-596.
doi: 10.1016/j.stem.2016.06.001
doi: 10.1182/blood.2021013201
86. Griessinger E, Pereira-Martins D, Nebout M, et al. Oxidative
phosphorylation fueled by fatty acid oxidation sensitizes 97. Rodriguez-Zabala M, Ramakrishnan R, Reinbach K, et al.
leukemic stem cells to cold. Cancer Res. 2023;83(15):2461-2470. Combined GLUT1 and OXPHOS inhibition eliminates
acute myeloid leukemia cells by restraining their metabolic
doi: 10.1158/0008-5472.CAN-23-1006 plasticity. Blood Adv. 2023;7(18):5382-5395.
87. Okoye CN, Koren SA, Wojtovich AP. Mitochondrial doi: 10.1182/bloodadvances.2023009967
complex I ROS production and redox signaling in hypoxia.
Redox Biol. 2023;67:102926. 98. Jones CL, Inguva A, Jordan CT. Targeting energy metabolism
in cancer stem cells: Progress and challenges in leukemia
doi: 10.1016/j.redox.2023.102926 and solid tumors. Cell Stem Cell. 2021;28(3):378-393.
88. Lagadinou ED, Sach A, Callahan K, et al. BCL-2 inhibition doi: 10.1016/j.stem.2021.02.013
targets oxidative phosphorylation and selectively eradicates
quiescent human leukemia stem cells. Cell Stem Cell. 99. Ochocki JD, Simon MC. Nutrient-sensing pathways and
2013;12(3):329-341. metabolic regulation in stem cells. J Cell Biol. 2013;203(1):23-33.
doi: 10.1083/jcb.201303110
doi: 10.1016/j.stem.2012.12.013
100. Gan B, DePinho RA. mTORC1 signaling governs hematopoietic
89. Umemoto T, Hashimoto M, Matsumura T, Nakamura-Ishizu A,
2+
Suda T. Ca -mitochondria axis drives cell division in stem cell quiescence. Cell Cycle. 2009;8(7):1003-1006.
hematopoietic stem cells. J Exp Med. 2018;215(8):2097-2113. doi: 10.4161/cc.8.7.8045
Volume 11 Issue 5 (2025) 65 doi: 10.36922/JCTR025320053

