Page 71 - JCTR-11-5
P. 71

Journal of Clinical and
            Translational Research                                          Metabolism of healthy and leukemic stem cells



            78.  Harayama  T, Riezman H.  Understanding the diversity      doi: 10.1084/jem.20180421
               of membrane lipid composition.  Nat Rev Mol Cell Biol.   90.  Kuntz EM, Baquero P, Michie AM,  et al. Targeting
               2018;19(5):281-296.
                                                                  mitochondrial  oxidative  phosphorylation  eradicates
               doi: 10.1038/nrm.2017.138                          therapy-resistant chronic myeloid leukemia stem cells. Nat
                                                                  Med. 2017;23(10):1234-1240.
            79.  Chen W, Zhao H, Li Y. Mitochondrial dynamics in health
               and disease: Mechanisms and potential targets.  Signal      doi: 10.1038/nm.4399
               Transduct Target Ther. 2023;8(1):333.
                                                               91.  Liu L, Wise DR, Diehl JA, Simon MC. Hypoxic reactive
               doi: 10.1038/s41392-023-01547-9                    oxygen species regulate the integrated stress response and
                                                                  cell survival. J Biol Chem. 2008;283(45):31153-31162.
            80.  Zhou D, Shao L, Spitz DR. Reactive oxygen species in normal
               and tumor stem cells. Adv Cancer Res. 2014;122:1-67.     doi: 10.1074/jbc.M805056200
               doi: 10.1016/B978-0-12-420117-0.00001-3         92.  Nwosu GO, Powell JA, Pitson SM. Targeting the integrated
                                                                  stress response in hematologic malignancies. Exp Hematol
            81.  Reuter  S, Gupta SC, Chaturvedi MM,  Aggarwal BB.
               Oxidative stress, inflammation, and cancer: How are they   Oncol. 2022;11(1):94.
               linked? Free Radic Biol Med. 2010;49(11):1603-1616.     doi: 10.1186/s40164-022-00348-0
               doi: 10.1016/j.freeradbiomed.2010.09.006        93.  Takao S, Morell V, Uni M,  et al. Epigenetic mechanisms
                                                                  controlling human leukemia stem cells and therapy
            82.  Pickles S, Vigie P, Youle RJ. Mitophagy and quality control
               mechanisms in mitochondrial maintenance.  Curr Biol.   resistance. Nat Commun. 2025;16(1):3196.
               2018;28(4):R170-R185.                              doi: 10.1038/s41467-025-58370-9
               doi: 10.1016/j.cub.2018.01.004                  94.  Le HT, Yu J, Ahn HS, et al. eIF2α phosphorylation-ATF4
                                                                  axis-mediated  transcriptional  reprogramming  mitigates
            83.  Jomova K, Raptova R, Alomar SY,  et al. Reactive oxygen
               species, toxicity, oxidative stress, and antioxidants: Chronic   mitochondrial impairment during ER  stress.  Mol  Cells.
               diseases and aging. Arch Toxicol. 2023;97(10):2499-2574.  2025;48(2):100176.
                                                                  doi: 10.1016/j.mocell.2024.100176
               doi: 10.1007/s00204-023-03562-9
                                                               95.  Shi X, Jiang Y, Kitano A, et al. Nuclear NAD  homeostasis
                                                                                                   +
            84.  Kulkarni CA, Brookes PS. Cellular compartmentation and
               the redox/nonredox functions of NAD.  Antioxid Redox   governed by NMNAT1 prevents apoptosis of acute myeloid
               Signal. 2019;31(9):623-642.                        leukemia stem cells. Sci Adv. 2021;7(30):eabf3895.
                                                                  doi: 10.1126/sciadv.abf3895
               doi: 10.1089/ars.2018.7722
                                                               96.  Amaya ML, Inguva A, Pei S,  et al. The STAT3-MYC axis
            85.  Ye H, Adane B, Khan N, et al. Leukemic stem cells evade
               chemotherapy by metabolic adaptation to an adipose tissue   promotes survival of leukemia stem cells by regulating
               niche. Cell Stem Cell. 2016;19(1):23-37.           SLC1A5   and   oxidative  phosphorylation.  Blood.
                                                                  2022;139(4):584-596.
               doi: 10.1016/j.stem.2016.06.001
                                                                  doi: 10.1182/blood.2021013201
            86.  Griessinger E, Pereira-Martins D, Nebout M, et al. Oxidative
               phosphorylation fueled by fatty acid oxidation sensitizes   97.  Rodriguez-Zabala M, Ramakrishnan R, Reinbach K, et al.
               leukemic stem cells to cold. Cancer Res. 2023;83(15):2461-2470.  Combined GLUT1 and OXPHOS inhibition eliminates
                                                                  acute myeloid leukemia cells by restraining their metabolic
               doi: 10.1158/0008-5472.CAN-23-1006                 plasticity. Blood Adv. 2023;7(18):5382-5395.
            87.  Okoye CN, Koren SA, Wojtovich AP. Mitochondrial      doi: 10.1182/bloodadvances.2023009967
               complex I ROS production and redox signaling in hypoxia.
               Redox Biol. 2023;67:102926.                     98.  Jones CL, Inguva A, Jordan CT. Targeting energy metabolism
                                                                  in cancer stem cells: Progress and challenges in leukemia
               doi: 10.1016/j.redox.2023.102926                   and solid tumors. Cell Stem Cell. 2021;28(3):378-393.
            88.  Lagadinou ED, Sach A, Callahan K, et al. BCL-2 inhibition      doi: 10.1016/j.stem.2021.02.013
               targets oxidative phosphorylation and selectively eradicates
               quiescent human leukemia stem  cells.  Cell Stem Cell.   99.  Ochocki JD, Simon MC. Nutrient-sensing pathways and
               2013;12(3):329-341.                                metabolic regulation in stem cells. J Cell Biol. 2013;203(1):23-33.
                                                                  doi: 10.1083/jcb.201303110
               doi: 10.1016/j.stem.2012.12.013
                                                               100.  Gan B, DePinho RA. mTORC1 signaling governs hematopoietic
            89.  Umemoto T, Hashimoto M, Matsumura T, Nakamura-Ishizu A,
                         2+
               Suda  T. Ca -mitochondria  axis  drives cell division in   stem cell quiescence. Cell Cycle. 2009;8(7):1003-1006.
               hematopoietic stem cells. J Exp Med. 2018;215(8):2097-2113.     doi: 10.4161/cc.8.7.8045

            Volume 11 Issue 5 (2025)                        65                         doi: 10.36922/JCTR025320053
   66   67   68   69   70   71   72   73   74   75   76