Page 72 - JCTR-11-5
P. 72

Journal of Clinical and
            Translational Research                                          Metabolism of healthy and leukemic stem cells



            101. Garcia D, Shaw RJ. AMPK: Mechanisms of cellular energy   glycolysis by Pdk functions as a metabolic checkpoint for
               sensing and restoration of metabolic balance.  Mol Cell.   cell cycle quiescence in hematopoietic stem cells. Cell Stem
               2017;66(6):789-800.                                Cell. 2013;12(1):49-61.
               doi: 10.1016/j.molcel.2017.05.032                  doi: 10.1016/j.stem.2012.10.011
            102. Torrence  ME,  MacArthur  MR, Hosios  AM,  et  al.  The   112. Testa U, Labbaye C, Castelli G, Pelosi E. Oxidative stress and
               mTORC1-mediated  activation  of  ATF4  promotes  protein   hypoxia in normal and leukemic stem cells. Exp Hematol.
               and glutathione  synthesis  downstream  of growth signals.   2016;44(7):540-560.
               Elife. 2021;10:e63326.
                                                                  doi: 10.1016/j.exphem.2016.04.012
               doi: 10.7554/eLife.63326
                                                               113. Velasco-Hernandez T, Soneji S, Hidalgo I, Erlandsson E,
            103. Ben-Sahra I, Hoxhaj G, Ricoult SJH, Asara JM,    Cammenga J, Bryder D. Hif-1α deletion may lead to adverse
               Manning BD. mTORC1 induces purine synthesis through   treatment effect in a mouse model of MLL-AF9-driven
               control of the mitochondrial tetrahydrofolate cycle. Science.   AML. Stem Cell Reports. 2019;12(1):112-121.
               2016;351(6274):728-733.
                                                                  doi: 10.1016/j.stemcr.2018.11.023
               doi: 10.1126/science.aad0489
                                                               114. Qiu S, Cai Y, Wang Z, Xie Y, Zhang A. Decoding functional
            104. Hardie DG. AMPK--sensing energy while talking to other   significance of small molecule metabolites.  Biomed
               signaling pathways. Cell Metab. 2014;20(6):939-952.  Pharmacother. 2023;158:114188.
               doi: 10.1016/j.cmet.2014.09.013                    doi: 10.1016/j.biopha.2022.114188
            105.  Krastinaite  I,  Charkavliuk  S,  Navakauskiene  R,  115. Cajka T, Fiehn O. Toward merging untargeted and targeted
               Borutinskaite  VV. Metformin as an enhancer for the   methods in mass spectrometry-based metabolomics and
               treatment of chemoresistant CD34+ acute myeloid leukemia   lipidomics. Anal Chem. 2016;88(1):524-545.
               cells. Genes (Basel). 2024;15(5):648.
                                                                  doi: 10.1021/acs.analchem.5b04491
               doi: 10.3390/genes15050648
                                                               116. Roberts LD, Souza AL, Gerszten RE, Clish CB. Targeted
            106. Bao B, Wang Z, Ali S,  et al. Metformin inhibits cell   metabolomics. Curr Protoc Mol Biol. 2012;98:30.2.1-30.2.24.
               proliferation, migration  and invasion  by attenuating  CSC
               function mediated by deregulating miRNAs in pancreatic      doi: 10.1002/0471142727.mb3002s98
               cancer cells. Cancer Prev Res (Phila). 2012;5(3):355-364.  117. Greving MP, Patti GJ, Siuzdak G. Nanostructure-initiator
               doi: 10.1158/1940-6207.Capr-11-0299                mass spectrometry metabolite analysis and imaging. Anal
                                                                  Chem. 2011;83(1):2-7.
            107. Farge T, Saland E, De Toni F, et al. Chemotherapy-resistant
               human acute myeloid leukemia cells are not enriched for      doi: 10.1021/ac101565f
               leukemic stem cells but require oxidative metabolism.   118. Niehaus M, Soltwisch J, Belov ME, Dreisewerd K.
               Cancer Discov. 2017;7(7):716-735.                  Transmission-mode MALDI-2 mass spectrometry imaging
               doi: 10.1158/2159-8290.CD-16-0441                  of cells and tissues at subcellular resolution. Nat Methods.
                                                                  2019;16(9):925-931.
            108. De Jonge-Peeters SD, Kuipers F, De Vries EG, Vellenga E.
               ABC transporter expression in hematopoietic stem cells and      doi: 10.1038/s41592-019-0536-2
               the role in AML drug resistance. Crit Rev Oncol Hematol.   119. Molenaar MR, Shahraz M, Delafiori J,  et al. Increasing
               2007;62(3):214-226.                                quantitation in spatial single-cell metabolomics by
               doi: 10.1016/j.critrevonc.2007.02.003              using fluorescence as ground truth.  Front Mol Biosci.
                                                                  2022;9:1021889.
            109. Porro A, Iraci N, Soverini S,  et al. c-MYC oncoprotein
               dictates transcriptional profiles of ATP-binding cassette      doi: 10.3389/fmolb.2022.1021889
               transporter genes in chronic myelogenous leukemia   120. Schmidt CA, Fisher-Wellman KH, Neufer PD. From
               CD34+ hematopoietic progenitor cells.  Mol Cancer Res.   OCR and ECAR to energy: Perspectives on the design
               2011;9(8):1054-1066.                               and interpretation of bioenergetics studies.  J  Biol Chem.
               doi: 10.1158/1541-7786.MCR-10-0510                 2021;297(4):101140.
            110. Rozovski U, Hazan-Halevy I, Barzilai M, Keating MJ,      doi: 10.1016/j.jbc.2021.101140
               Estrov  Z. Metabolism pathways in chronic lymphocytic   121. Chen L, Zhong F, Zhu J. Bridging targeted and untargeted
               leukemia. Leuk Lymphoma. 2016;57(4):758-765.       mass spectrometry-based metabolomics via  hybrid
               doi: 10.3109/10428194.2015.1106533                 approaches. Metabolites. 2020;10(9):348.
            111. Takubo K, Nagamatsu G, Kobayashi CI, et al. Regulation of      doi: 10.3390/metabo10090348


            Volume 11 Issue 5 (2025)                        66                         doi: 10.36922/JCTR025320053
   67   68   69   70   71   72   73   74   75   76   77