Page 68 - JCTR-11-5
P. 68

Journal of Clinical and
            Translational Research                                          Metabolism of healthy and leukemic stem cells



               doi: 10.1016/j.stem.2010.07.011                    doi: 10.1038/nrm3591
            9.   Papa L, Djedaini M, Hoffman R. Mitochondrial role in   20.  Chotinantakul K, Leeanansaksiri W. Hematopoietic stem
               stemness and differentiation of hematopoietic stem cells.   cell development, niches, and signaling pathways.  Bone
               Stem Cells Int. 2019;2019:4067162.                 Marrow Res. 2012;2012:270425.
               doi: 10.1155/2019/4067162                          doi: 10.1155/2012/270425
            10.  Liao Y, Octaviani S, Tian Z, Wang SR, Huang C, Huang J.   21.  Huang X, Trinh T, Aljoufi A, Broxmeyer HE. Hypoxia
               Mitochondrial quality control in hematopoietic stem cells:   signaling pathway in stem cell regulation: Good and evil.
               Mechanisms, implications, and therapeutic opportunities.   Curr Stem Cell Rep. 2018;4(2):149-157.
               Stem Cell Res Ther. 2025;16(1):180.                doi: 10.1007/s40778-018-0127-7
               doi: 10.1186/s13287-025-04304-7                 22.  Mistry JJ, Bowles K, Rushworth SA. HSC-derived fatty acid

            11.  Hira VVV, Van Noorden CJF, Carraway HE, Maciejewski   oxidation in steady-state and stressed hematopoiesis.  Exp
               JP,  Molenaar  RJ.  Novel  therapeutic  strategies  to  target   Hematol. 2023;117:1-8.
               leukemic cells that hijack compartmentalized continuous      doi: 10.1016/j.exphem.2022.10.003
               hematopoietic stem cell niches. Biochim Biophys Acta Rev
               Cancer. 2017;1868(1):183-198.                   23.  Mohrin M, Chen D. The mitochondrial metabolic
                                                                  checkpoint and aging of hematopoietic stem cells. Curr Opin
               doi: 10.1016/j.bbcan.2017.03.010                   Hematol. 2016;23(4):318-324.
            12.  Mesbahi Y, Trahair TN, Lock RB, Connerty P. Exploring the      doi: 10.1097/MOH.0000000000000244
               metabolic landscape of AML: From haematopoietic stem
               cells to myeloblasts and leukaemic stem cells. Front Oncol.   24.  Zhao T, Zhang J, Lei H, et al. NRF1-mediated mitochondrial
               2022;12:807266.                                    biogenesis antagonizes innate antiviral immunity. EMBO J.
                                                                  2023;42(16):e113258.
               doi: 10.3389/fonc.2022.807266
                                                                  doi: 10.15252/embj.2022113258
            13.  O’Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus   25.  Peng M, Huang Y, Zhang L, Zhao X, Hou Y. Targeting
               leukemic stem cell quiescence: Challenges and therapeutic   mitochondrial oxidative phosphorylation eradicates acute
               opportunities. Blood Rev. 2021;50:100850.
                                                                  myeloid leukemic stem cells. Front Oncol. 2022;12:899502.
               doi: 10.1016/j.blre.2021.100850
                                                                  doi: 10.3389/fonc.2022.899502
            14.  Man  CH,  Li C,  Xu  X,  Zhao  M. Metabolic  regulation in   26.  De Beauchamp L, Himonas E, Helgason GV. Mitochondrial
               normal and leukemic stem cells.  Trends Pharmacol Sci.   metabolism as a potential therapeutic target in myeloid
               2024;45(10):919-930.                               leukaemia. Leukemia. 2022;36(1):1-12.
               doi: 10.1016/j.tips.2024.08.004                    doi: 10.1038/s41375-021-01416-w
            15.  Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics:   27.  Nwajei F, Konopleva M. The bone marrow microenvironment
               The apogee of the omics trilogy.  Nat Rev Mol Cell Biol.   as niche retreats for hematopoietic and leukemic stem cells.
               2012;13(4):263-269.                                Adv Hematol. 2013;2013:953982.
               doi: 10.1038/nrm3314                               doi: 10.1155/2013/953982
            16.  DeBerardinis RJ, Keshari KR. Metabolic analysis as   28.  Yao Y, Li F, Huang J, Jin J, Wang H. Leukemia stem cell-
               a  driver  for  discovery,  diagnosis,  and  therapy.  Cell.   bone marrow microenvironment interplay in acute myeloid
               2022;185(15):2678-2689.                            leukemia development. Exp Hematol Oncol. 2021;10(1):39.
               doi: 10.1016/j.cell.2022.06.029                    doi: 10.1186/s40164-021-00233-2
            17.  Song BH, Son SY, Kim HK,  et al. Profiling of metabolic   29.  Yamazaki  S, Iwama A,  Takayanagi S,  Eto K,  Ema H,
               differences between hematopoietic stem cells and acute/  Nakauchi H. TGF-beta as a candidate bone marrow niche
               chronic myeloid leukemia. Metabolites. 2020;10(11):427.  signal to induce hematopoietic stem cell hibernation. Blood.
               doi: 10.3390/metabo10110427                        2009;113(6):1250-1256.
            18.  Zhao X,  Zhang C, Cui  X, Liang  Y. Interactions of      doi: 10.1182/blood-2008-04-146480
               hematopoietic stem cells with bone marrow niche. Methods   30.  Vaidya A, Kale VP. TGF-β signaling and its role in the
               Mol Biol. 2021;2346:21-34.                         regulation of hematopoietic stem cells.  Syst Synth Biol.
               doi: 10.1007/7651_2020_298                         2015;9(1-2):1-10.
                                                                  doi: 10.1007/s11693-015-9161-2
            19.  Cheung TH, Rando TA. Molecular regulation of stem cell
               quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329-340.  31.  Blank U, Karlsson S. TGF-β signaling in the control of


            Volume 11 Issue 5 (2025)                        62                         doi: 10.36922/JCTR025320053
   63   64   65   66   67   68   69   70   71   72   73