Page 34 - MI-1-2
P. 34
Microbes & Immunity Homologous versus heterologous COVID-19 vaccines
ChAdOx1 nCoV-19 and mRNA-1273 Vaccination. N Engl J severe disease among persons infected with SARS-CoV-2
Med. 2021;385:1049-1051. Omicron variant: Real-world study in Jilin Province, China.
Emerg Microbes Infect. 2023;12:2149935.
doi: 10.1056/NEJMc2110716
doi: 10.1080/22221751.2022.2149935
26. Rose R, Neumann F, Grobe O, Lorentz T, Fickenscher H,
Krumbholz A. Humoral immune response after different 34. Mok CKP, Chen C, Yiu K, et al. A randomized clinical trial
SARS-CoV-2 vaccination regimens. BMC Med. 2022;20:31. using CoronaVac or BNT162b2 vaccine as a third dose in
adults vaccinated with two doses of CoronaVac. Am J Respir
doi: 10.1186/s12916-021-02231-x
Crit Care Med. 2022;205:844-847.
27. Schmidt T, Klemis V, Schub D, et al. Immunogenicity and doi: 10.1164/rccm.202111-2655LE
reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA
vaccination. Nat Med. 2021;27:1530-1535. 35. Gerhards C, Thiaucourt M, Hetjens M, Haselmann V,
Neumaier M, Kittel M. Heterologous Vector-mRNA Based
doi: 10.1038/s41591-021-01464-w SARS-CoV-2 vaccination strategy appears superior to a
28. Stuart ASV, Shaw RH, Liu X, et al. Immunogenicity, safety, homologous vector-based vaccination scheme in german
and reactogenicity of heterologous COVID-19 primary healthcare workers regarding humoral SARS-CoV-2
vaccination incorporating mRNA, viral-vector, and protein- response indicating a high boosting effect by mRNA
adjuvant vaccines in the UK (Com-COV2): A single- vaccines. Vaccines (Basel). 2023;11:701.
blind, randomised, phase 2, non-inferiority trial. Lancet. doi: 10.3390/vaccines11030701
2022;399:36-49.
36. Intapiboon P, Seepathomnarong P, Ongarj J, et al.
doi: 10.1016/S0140-6736(21)02718-5 Immunogenicity and safety of an intradermal BNT162b2
29. Tenbusch M, Schumacher S, Vogel E, et al. Heterologous mRNA vaccine booster after two doses of inactivated SARS-
prime-boost vaccination with ChAdOx1 nCoV-19 and CoV-2 vaccine in healthy population. Vaccines (Basel).
BNT162b2. Lancet Infect Dis. 2021;21:1212-1213. 2021;9:1375.
doi: 10.1016/S1473-3099(21)00420-5 doi: 10.3390/vaccines9121375
30. Vallée A, Vasse M, Mazaux L, et al. An immunogenicity 37. Spencer AJ, McKay PF, Belij-Rammerstorfer S, et al.
report for the comparison between heterologous and Heterologous vaccination regimens with self-amplifying
homologous prime-boost schedules with ChAdOx1-S and RNA and adenoviral COVID vaccines induce robust
BNT162b2 vaccines. J Clin Med. 2021;10:3817. immune responses in mice. Nat Commun. 2021;12:2893.
doi: 10.3390/jcm10173817 doi: 10.1038/s41467-021-23173-1
31. Zhang R, Liu D, Leung KY, et al. Immunogenicity of a 38. Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD,
heterologous prime-boost COVID-19 vaccination with Xing Z. Immunological considerations for COVID-19
mRNA and inactivated virus vaccines compared with vaccine strategies. Nat Rev Immunol. 2020;20:615-632.
homologous vaccination strategy against SARS-CoV-2 doi: 10.1038/s41577-020-00434-6
variants. Vaccines (Basel). 2022;10:72.
39. Sadarangani M, Marchant A, Kollmann TR. Immunological
doi: 10.3390/vaccines10010072 mechanisms of vaccine-induced protection against
32. Sila T, Suriyaamorn W, Toh C, et al. Factors associated with COVID-19 in humans. Nat Rev Immunol. 2021;21:475-484.
the worsening of COVID-19 symptoms among cohorts in doi: 10.1038/s41577-021-00578-z
community-or home-isolation care in southern Thailand. 40. Khoury DS, Cromer D, Reynaldi A, et al. Neutralizing
Front Public Health. 2024;12:1350304.
antibody levels are highly predictive of immune protection
doi: 10.3389/fpubh.2024.1350304 from symptomatic SARS-CoV-2 infection. Nat Med.
2021;27:1205-1211.
33. Xu H, Li H, You H, et al. Effectiveness of inactivated
COVID-19 vaccines against mild disease, pneumonia, and doi: 10.1038/s41591-021-01377-8
Volume 1 Issue 2 (2024) 28 doi: 10.36922/mi.3757

