Page 137 - MI-2-3
P. 137
Microbes & Immunity Statistical modeling of COVID-19 trends
https://www.who.int/news-room/feature-stories/detail/ Wuhan, China, of novel coronavirus-infected pneumonia.
update-on-omicron-subvariants-and-the-global-covid-19- N Engl J Med. 2020;382(13):1199-1207.
situation [Last accessed on 2024 Sep 24].
doi: 10.1056/NEJMoa2001316
42. World Health Organization. Weekly Epidemiological Update
on COVID-19; 2023. Available from: https://www.who.int/ 46. Hernández-Orallo E, Chiner-Oms Á, Rubio-Soler M, et al.
publications/m/item/weekly-epidemiological-update-on- The importance of considering the impact of COVID-19
covid-19 [Last accessed on 2023 Jan 11]. variants in forecasting models. J Ambient Intell Hum
Comput. 2022;13(7):3285-3298.
43. Chowell G, Hyman JM, Castillo-Chavez C. Mathematical
and Statistical Estimation Approaches in Epidemiology. doi: 10.1007/s12652-021-03113-x
Germany: Springer; 2021. 47. Gao Q, Hu Y, Dai H, et al. Modeling COVID-19 with
44. Liu Z, Magal P, Seydi O, Webb G. Predicting the cumulative ARIMA and ARIMAX models: A case study in China. IEEE
number of cases for the COVID-19 epidemic in China from Access. 2022;10:55089-55102.
early data. Math Biosci Eng. 2020;17(4):3040-3051. doi: 10.1109/ACCESS.2022.3182134
doi: 10.3934/mbe.2020172
48. Wooldridge JM. Introductory Econometrics: A Modern
45. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Approach. 6 ed. United States: Cengage Learning; 2016.
th
Volume 2 Issue 3 (2025) 129 doi: 10.36922/MI025040007

