Page 136 - MI-2-3
P. 136
Microbes & Immunity Statistical modeling of COVID-19 trends
12. Ljung GM, Box GE. On a measure of lack of fit in time series 26. Imbens GW, Lemieux T. Regression discontinuity designs:
models. Biometrika. 1978;65(2):297-303. A guide to practice. J Econometrics. 2008;142(2):615-635.
doi: 10.1093/biomet/65.2.297 doi: 10.1016/j.jeconom.2007.05.001
13. Akaike H. A new look at the statistical model identification. 27. Mukaka MM. A guide to appropriate use of correlation
In: Parzen E, Tanabe K, Kitagawa G, editors. Selected Papers coefficient in medical research. Malawi Med J. 2012;24(3):69-71.
of Hirotugu Akaike. Germany: Springer; 1994. p. 215-232.
28. Kutner MH, Nachtsheim CJ, Neter J, Li W. Applied Linear
doi: 10.1007/978-1-4612-1694-0_16 Statistical Models. 5 ed. United Staes: McGraw-Hill/Irwin;
th
2005.
14. Hyndman RJ, Athanasopoulos G. Forecasting: Principles and
practice. Australia: OTexts; 2018. 29. Montgomery DC, Peck EA, Vining GG. Introduction to
Linear Regression Analysis. 5 ed. United States: John Wiley
th
15. Bergmeir C, Benítez JM. On the use of cross-validation and Sons; 2012.
for time series predictor evaluation. Inform Sci. 2012;191:
192-213. 30. Burnham KP, Anderson DR. Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach.
doi: 10.1016/j.ins.2011.12.028
2 ed. Germany: Springer; 2004.
nd
16. Chai T, Draxler RR. Root mean square error (RMSE) or mean 31. O’Brien RM. A caution regarding rules of thumb for variance
absolute error (MAE)? - Arguments against avoiding RMSE in inflation factors. Qual Quant. 2007;41(5):673-690.
the literature. Geosci Model Dev. 2014;7(3):1247-1250.
doi: 10.1007/s11135-006-9018-6
doi: 10.5194/gmd-7-1247-2014
32. James G, Witten D, Hastie T, Tibshirani R. An Introduction
17. Willmott CJ, Matsuura K. Advantages of the mean absolute to Statistical Learning: With Applications in R. Germany:
error (MAE) over the root mean square error (RMSE) Springer; 2013.
in assessing average model performance. Climate Res.
nd
2005;30(1):79-82. 33. Jolliffe IT. Principal Component Analysis. 2 ed. Germany:
Springer; 2002.
18. Hyndman RJ, Khandakar Y. Automatic time series
forecasting: The forecast package for R. J Stat Softw. 34. Wold S, Sjöström M, Eriksson L. PLS-regression: A basic tool
2008;27(3):1-22. of chemometrics. Chemometr Intell Lab Syst. 2001;58(2):109-
130.
doi: 10.18637/jss.v027.i03
doi: 10.1016/S0169-7439(01)00155-1
19. Tashman LJ. Out-of-sample tests of forecasting accuracy: An
analysis and review. Int J Forecasting. 2000;16(4):437-450. 35. Anselin L. Local indicators of spatial association-LISA.
Geograph Anal. 1995;27(2):93-115.
doi: 10.1016/S0169-2070(00)00065-0
doi: 10.1111/j.1538-4632.1995.tb00338.x
20. Chandola V, Banerjee A, Kumar V. Anomaly detection:
A survey. ACM Comput Surv. 2009;41(3):1-58. 36. Ord JK, Getis A. Local spatial autocorrelation statistics:
Distributional issues and an application. Geograph Anal.
doi: 10.1145/1541880.1541882
1995;27(4):286-306.
21. Aggarwal CC. Outlier Analysis. 2 ed. Germany: Springer;
nd
2017. doi: 10.1111/j.1538-4632.1995.tb00912.x
37. Cliff AD, Ord JK. Spatial Processes: Models and Applications.
22. Pankratz A. Forecasting with Dynamic Regression Models.
United States: John Wiley and Sons; 1991. Billerica, MA: Pion; 1981.
38. Getis A, Ord JK. The analysis of spatial association by use of
23. Granger CWJ. Investigating causal relations by econometric
models and cross-spectral methods. Econometrica. distance statistics. Geograph Anal. 1992;24(3):189-206.
1969;37(3):424-438. doi: 10.1111/j.1538-4632.1992.tb00261.x
doi: 10.2307/1912791 39. World Health Organization. Classification of Omicron
(B.1.1.529): SARS-CoV-2 Variant of Concern. Available from:
24. Wagner AK, Soumerai SB, Zhang F, Ross-Degnan D. https://www.who.int/news/item/26-11-2021-classification-
Segmented regression analysis of interrupted time series of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern [Last
studies in medication use research. J Clin Pharm Ther. accessed on 2021 Nov 26].
2002;27(4):299-309.
40. World Health Organization. Tracking SARS-CoV-2 Variants;
doi: 10.1046/j.1365-2710.2002.00430.x
2022. Available from: https://www.who.int/en/activities/
25. Chow GC. Tests of equality between sets of coefficients in tracking-sars-cov-2-variants [Last accessed on 2025 Jun 16].
two linear regressions. Econometrica. 1960;28(3):591-605.
41. World Health Organization. Update on Omicron Subvariants
doi: 10.2307/1910133 and the Global COVID-19 Situation; 2022. Available from:
Volume 2 Issue 3 (2025) 128 doi: 10.36922/MI025040007

