Page 136 - MI-2-3
P. 136

Microbes & Immunity                                                  Statistical modeling of COVID-19 trends



            12.  Ljung GM, Box GE. On a measure of lack of fit in time series   26.  Imbens GW, Lemieux T. Regression discontinuity designs:
               models. Biometrika. 1978;65(2):297-303.            A guide to practice. J Econometrics. 2008;142(2):615-635.
               doi: 10.1093/biomet/65.2.297                       doi: 10.1016/j.jeconom.2007.05.001
            13.  Akaike H. A new look at the statistical model identification.   27.  Mukaka  MM.  A  guide  to  appropriate  use  of  correlation
               In: Parzen E, Tanabe K, Kitagawa G, editors. Selected Papers   coefficient in medical research. Malawi Med J. 2012;24(3):69-71.
               of Hirotugu Akaike. Germany: Springer; 1994. p. 215-232.
                                                               28.  Kutner MH, Nachtsheim CJ, Neter J, Li W. Applied Linear
               doi: 10.1007/978-1-4612-1694-0_16                  Statistical Models. 5  ed. United Staes: McGraw-Hill/Irwin;
                                                                                 th
                                                                  2005.
            14.  Hyndman RJ, Athanasopoulos G. Forecasting: Principles and
               practice. Australia: OTexts; 2018.              29.  Montgomery DC, Peck EA, Vining GG.  Introduction to
                                                                  Linear Regression Analysis. 5  ed. United States: John Wiley
                                                                                       th
            15.  Bergmeir C, Benítez JM. On the use of cross-validation   and Sons; 2012.
               for time series predictor evaluation. Inform Sci. 2012;191:
               192-213.                                        30.  Burnham KP, Anderson DR. Model Selection and Multimodel
                                                                  Inference:  A  Practical  Information-Theoretic  Approach.
               doi: 10.1016/j.ins.2011.12.028
                                                                  2  ed. Germany: Springer; 2004.
                                                                   nd
            16.  Chai T, Draxler RR. Root mean square error (RMSE) or mean   31.  O’Brien RM. A caution regarding rules of thumb for variance
               absolute error (MAE)? - Arguments against avoiding RMSE in   inflation factors. Qual Quant. 2007;41(5):673-690.
               the literature. Geosci Model Dev. 2014;7(3):1247-1250.
                                                                  doi: 10.1007/s11135-006-9018-6
               doi: 10.5194/gmd-7-1247-2014
                                                               32.  James G, Witten D, Hastie T, Tibshirani R. An Introduction
            17.  Willmott CJ, Matsuura K. Advantages of the mean absolute   to Statistical Learning: With Applications in R. Germany:
               error (MAE) over the root mean square error (RMSE)   Springer; 2013.
               in assessing average model performance.  Climate Res.
                                                                                                  nd
               2005;30(1):79-82.                               33.  Jolliffe IT. Principal Component Analysis. 2  ed. Germany:
                                                                  Springer; 2002.
            18.  Hyndman RJ, Khandakar Y. Automatic time series
               forecasting: The forecast package for R.  J  Stat Softw.   34.  Wold S, Sjöström M, Eriksson L. PLS-regression: A basic tool
               2008;27(3):1-22.                                   of chemometrics. Chemometr Intell Lab Syst. 2001;58(2):109-
                                                                  130.
               doi: 10.18637/jss.v027.i03
                                                                  doi: 10.1016/S0169-7439(01)00155-1
            19.  Tashman LJ. Out-of-sample tests of forecasting accuracy: An
               analysis and review. Int J Forecasting. 2000;16(4):437-450.  35.  Anselin L. Local indicators of spatial association-LISA.
                                                                  Geograph Anal. 1995;27(2):93-115.
               doi: 10.1016/S0169-2070(00)00065-0
                                                                  doi: 10.1111/j.1538-4632.1995.tb00338.x
            20.  Chandola V, Banerjee A, Kumar V. Anomaly detection:
               A survey. ACM Comput Surv. 2009;41(3):1-58.     36.  Ord  JK,  Getis  A.  Local  spatial  autocorrelation  statistics:
                                                                  Distributional issues and an application.  Geograph Anal.
               doi: 10.1145/1541880.1541882
                                                                  1995;27(4):286-306.
            21.  Aggarwal CC. Outlier Analysis. 2  ed. Germany: Springer;
                                        nd
               2017.                                              doi: 10.1111/j.1538-4632.1995.tb00912.x
                                                               37.  Cliff AD, Ord JK. Spatial Processes: Models and Applications.
            22.  Pankratz A.  Forecasting with Dynamic Regression Models.
               United States: John Wiley and Sons; 1991.          Billerica, MA: Pion; 1981.
                                                               38.  Getis A, Ord JK. The analysis of spatial association by use of
            23.  Granger CWJ. Investigating causal relations by econometric
               models and cross-spectral methods.  Econometrica.   distance statistics. Geograph Anal. 1992;24(3):189-206.
               1969;37(3):424-438.                                doi: 10.1111/j.1538-4632.1992.tb00261.x
               doi: 10.2307/1912791                            39.  World Health Organization.  Classification of Omicron
                                                                  (B.1.1.529): SARS-CoV-2 Variant of Concern. Available from:
            24.  Wagner AK, Soumerai SB, Zhang F, Ross-Degnan D.   https://www.who.int/news/item/26-11-2021-classification-
               Segmented regression analysis of interrupted time series   of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern [Last
               studies  in medication use research.  J  Clin Pharm Ther.   accessed on 2021 Nov 26].
               2002;27(4):299-309.
                                                               40.  World Health Organization. Tracking SARS-CoV-2 Variants;
               doi: 10.1046/j.1365-2710.2002.00430.x
                                                                  2022.  Available  from:  https://www.who.int/en/activities/
            25.  Chow GC. Tests of equality between sets of coefficients in   tracking-sars-cov-2-variants [Last accessed on 2025 Jun 16].
               two linear regressions. Econometrica. 1960;28(3):591-605.
                                                               41.  World Health Organization. Update on Omicron Subvariants
               doi: 10.2307/1910133                               and the Global COVID-19 Situation; 2022. Available from:


            Volume 2 Issue 3 (2025)                        128                           doi: 10.36922/MI025040007
   131   132   133   134   135   136   137   138   139   140   141