Page 56 - MSAM-1-2
P. 56

Materials Science in Additive Manufacturing                     Process study of DED steel matrix composites


               156: 51–63.                                        https://doi.org/10.1016/s0921-5093(00)01465-9
               https://doi.org/10.1016/j.compositesb.2018.07.050  28.  Fogagnolo JB, Velasco F, Robert MH, et al., 2003, Effect of
                                                                  mechanical alloying on the morphology, microstructure and
            20.  Lu X, Chiumenti M, Cervera M, et al., 2021, Substrate design   properties of aluminium matrix composite powders. Mater
               to minimize residual stresses in directed energy deposition   Sci Eng A, 342: 131–143.
               AM processes. Mater Des, 202: 109525.
                                                                  https://doi.org/10.1016/s0921-5093(02)00246-0
               https://doi.org/10.1016/j.matdes.2021.109525
                                                               29.  Xu H,  Lu Z, Jia C,  et al., 2015, Influence of  mechanical
            21.  Mukherjee T, Manvatkar V, De A, DebRoy T, 2017, Mitigation   alloying time on morphology and properties of 15Cr-ODS
               of thermal distortion during additive manufacturing. Script   steel powders. High Temperature Materials and Processes, 35:
               Mater, 127: 79–83.
                                                                  473–477.
               https://doi.org/10.1016/j.scriptamat.2016.09.001     https://doi.org/10.1515/htmp-2014-0229
            22.  Saboori A, Piscopo G, Lai M, et al., 2020, An investigation   30.  Zhao Q, Yu L, Liu Y, et al., 2015, Morphology and structure
               on the effect of deposition pattern on the microstructure,   evolution  of  Y O   nanoparticles  in  ODS  steel  powders
               mechanical properties and residual stress of 316L produced   during mechanical alloying and annealing.  Adv  Powder
                                                                              2
                                                                                3
               by directed energy deposition. Mater Sci Eng A, 780: 139179.  Technol, 26: 1578–1582.
               https://doi.org/10.1016/j.msea.2020.139179         https://doi.org/10.1016/j.apt.2015.08.017
            23.  Saeidi K, Gao X, Zhong Y, et al., 2015, Hardened austenite   31.  Rahmanifard R, Farhangi H, Novinrooz AJ, 2010,
               steel with columnar sub-grain structure formed by laser   Optimization of mechanical alloying parameters in
               melting. Mater Sci Eng A, 625: 221–229.            12YWT ferritic steel nanocomposite.  Mater Sci Eng A,
               https://doi.org/10.1016/j.msea.2014.12.018         527: 6853–6857.
            24.  Tan ZE, Pang JH, Kaminski, et al., 2019, Characterisation      https://doi.org/10.1016/j.msea.2010.07.048
               of porosity, density, and microstructure of directed   32.  Si C, Zhang Z, Zhang Q, et al., 2021, Influence of mechanical
               energy deposited stainless steel AISI 316L.  Addit Manuf,   alloying on the particle size, microstructure and soft
               25: 286–296.                                       magnetic properties of coarse Fe-based amorphous powders
               https://doi.org/10.1016/j.addma.2018.11.014        prepared by gas atomization. J Non Cryst Solids, 559: 120675.
            25.  Yadroitsev I, Krakhmalev P, Yadroitsava I,  et al., 2013,      https://doi.org/10.1016/j.jnoncrysol.2021.120675
               Energy input effect on morphology and microstructure of   33.  AlMangour B, Grzesiak D, Yang JM, 2016, Rapid fabrication
               selective laser melting single track from metallic powder.   of bulk-form TiB /316L stainless steel nanocomposites with
                                                                               2
               J Mater Proc Technol, 213: 600–613.                novel reinforcement architecture and improved performance
               https://doi.org/10.1016/j.jmatprotec.2012.11.014   by selective laser melting. J Alloys Comp, 680: 480–493.
            26.  Zhang DL, 2004, Processing of advanced materials      https://doi.org/10.1016/j.jallcom.2016.04.156
               using high-energy mechanical milling.  Prog  Mater  Sci,   34.  Sarma IK,  Srinivas V, Subbu  SK,  2021, Effect of process
               49: 537–560.                                       parameters on micro hardness, bulk hardness and porosity
                                                                  of LENS  deposited SS 316L alloy.  Mater Today Proc,
                                                                         TM
            27.  Suryanarayana C, Ivanov E, Boldyrev VV, 2002, The science
               and technology of mechanical alloying.  Mater Sci Eng A,   46:2616–2624.
               304–306: 151–158.                                  https://doi.org/10.1016/j.matpr.2021.02.268






















            Volume 1 Issue 2 (2022)                         10                     http://doi.org/10.18063/msam.v1i2.13
   51   52   53   54   55   56   57   58   59   60   61