Page 56 - MSAM-1-2
P. 56
Materials Science in Additive Manufacturing Process study of DED steel matrix composites
156: 51–63. https://doi.org/10.1016/s0921-5093(00)01465-9
https://doi.org/10.1016/j.compositesb.2018.07.050 28. Fogagnolo JB, Velasco F, Robert MH, et al., 2003, Effect of
mechanical alloying on the morphology, microstructure and
20. Lu X, Chiumenti M, Cervera M, et al., 2021, Substrate design properties of aluminium matrix composite powders. Mater
to minimize residual stresses in directed energy deposition Sci Eng A, 342: 131–143.
AM processes. Mater Des, 202: 109525.
https://doi.org/10.1016/s0921-5093(02)00246-0
https://doi.org/10.1016/j.matdes.2021.109525
29. Xu H, Lu Z, Jia C, et al., 2015, Influence of mechanical
21. Mukherjee T, Manvatkar V, De A, DebRoy T, 2017, Mitigation alloying time on morphology and properties of 15Cr-ODS
of thermal distortion during additive manufacturing. Script steel powders. High Temperature Materials and Processes, 35:
Mater, 127: 79–83.
473–477.
https://doi.org/10.1016/j.scriptamat.2016.09.001 https://doi.org/10.1515/htmp-2014-0229
22. Saboori A, Piscopo G, Lai M, et al., 2020, An investigation 30. Zhao Q, Yu L, Liu Y, et al., 2015, Morphology and structure
on the effect of deposition pattern on the microstructure, evolution of Y O nanoparticles in ODS steel powders
mechanical properties and residual stress of 316L produced during mechanical alloying and annealing. Adv Powder
2
3
by directed energy deposition. Mater Sci Eng A, 780: 139179. Technol, 26: 1578–1582.
https://doi.org/10.1016/j.msea.2020.139179 https://doi.org/10.1016/j.apt.2015.08.017
23. Saeidi K, Gao X, Zhong Y, et al., 2015, Hardened austenite 31. Rahmanifard R, Farhangi H, Novinrooz AJ, 2010,
steel with columnar sub-grain structure formed by laser Optimization of mechanical alloying parameters in
melting. Mater Sci Eng A, 625: 221–229. 12YWT ferritic steel nanocomposite. Mater Sci Eng A,
https://doi.org/10.1016/j.msea.2014.12.018 527: 6853–6857.
24. Tan ZE, Pang JH, Kaminski, et al., 2019, Characterisation https://doi.org/10.1016/j.msea.2010.07.048
of porosity, density, and microstructure of directed 32. Si C, Zhang Z, Zhang Q, et al., 2021, Influence of mechanical
energy deposited stainless steel AISI 316L. Addit Manuf, alloying on the particle size, microstructure and soft
25: 286–296. magnetic properties of coarse Fe-based amorphous powders
https://doi.org/10.1016/j.addma.2018.11.014 prepared by gas atomization. J Non Cryst Solids, 559: 120675.
25. Yadroitsev I, Krakhmalev P, Yadroitsava I, et al., 2013, https://doi.org/10.1016/j.jnoncrysol.2021.120675
Energy input effect on morphology and microstructure of 33. AlMangour B, Grzesiak D, Yang JM, 2016, Rapid fabrication
selective laser melting single track from metallic powder. of bulk-form TiB /316L stainless steel nanocomposites with
2
J Mater Proc Technol, 213: 600–613. novel reinforcement architecture and improved performance
https://doi.org/10.1016/j.jmatprotec.2012.11.014 by selective laser melting. J Alloys Comp, 680: 480–493.
26. Zhang DL, 2004, Processing of advanced materials https://doi.org/10.1016/j.jallcom.2016.04.156
using high-energy mechanical milling. Prog Mater Sci, 34. Sarma IK, Srinivas V, Subbu SK, 2021, Effect of process
49: 537–560. parameters on micro hardness, bulk hardness and porosity
of LENS deposited SS 316L alloy. Mater Today Proc,
TM
27. Suryanarayana C, Ivanov E, Boldyrev VV, 2002, The science
and technology of mechanical alloying. Mater Sci Eng A, 46:2616–2624.
304–306: 151–158. https://doi.org/10.1016/j.matpr.2021.02.268
Volume 1 Issue 2 (2022) 10 http://doi.org/10.18063/msam.v1i2.13

