Page 74 - MSAM-1-2
P. 74
Materials Science in Additive Manufacturing Cold spray additive manufacturing of Cu-based materials
21. Imbriglio SI, Chromik RR., 2021, Factors affecting adhesion 32. Zhan GD, Kuntz JD, Wan J, et al., 2003, Single-wall carbon
in metal/ceramic interfaces created by cold spray. J Therm nanotubes as attractive toughening agents in alumina-based
Spray Technol, 30: 1703–1723. nanocomposites. Nat Mater, 2: 38–42.
https://doi.org/10.1007/s11666-021-01229-4 https://doi.org/10.1038/nmat793
22. Pathak S, Saha GC., 2017, Development of sustainable cold 33. Coleman JN, Khan U, Blau WJ, et al., 2006, Small but strong:
spray coatings and 3D additive manufacturing components A review of the mechanical properties of carbon nanotube-
for repair/manufacturing applications: A critical review. polymer composites. Carbon, 44: 1624–1652.
Coatings, 7: 122.
https://doi.org/10.1016/j.carbon.2006.02.038
https://doi.org/10.3390/coatings7080122
34. Ajayan PM, Tour JM, 2007, Nanotube composites. Nature,
23. Fukumoto M, Wada H, Tanabe K, et al., 2007, Effect of 447: 1066–1068.
substrate temperature on deposition behavior of copper
particles on substrate surfaces in the cold spray process. https://doi.org/10.1038/4471066a
J Therm Spray Technol, 16: 643–650. 35. Kwon H, Estili M, Takagi K, et al., 2009, Combination of hot
https://doi.org/10.1007/s11666-007-9121-9 extrusion and spark plasma sintering for producing carbon
nanotube reinforced aluminum matrix composites. Carbon,
24. Borchers C, Stoltenhoff T, Gärtner F, et al., 2001, Deformation 47: 570–577.
microstructure of cold gas sprayed coatings. Mater Res Soc
Symp Proc, 674: P7.10.1–P.10.6. https://doi.org/10.1016/j.carbon.2008.10.041
https://doi.org/10.1557/proc-673-p7.10 36. Cha SI, Kim KT, Arshad SN, et al., 2005, Extraordinary
strengthening effect of carbon nanotubes in metal-matrix
25. Assadi H, Kreye H, Gärtner F, et al., 2016, Cold spraying a nanocomposites processed by molecular-level mixing. Adv
materials perspective. Acta Materi, 116: 382–407.
Mater, 17: 1377–1381.
https://doi.org/10.1016/j.actamat.2016.06.034
https://doi.org/10.1002/adma.200401933
26. Moridi A, Hassani-Gangaraj SM, Guagliano M, et al., 2014, 37. Bakshi SR, Lahiri D, Agarwal A, 2010, Carbon nanotube
Cold spray coating: Review of material systems and future reinforced metal matrix composites a review. Int Mater Rev,
perspectives. Surface Eng, 30: 369–395.
55: 41–64.
https://doi.org/10.1179/1743294414Y.0000000270
https://doi.org/10.1179/095066009X12572530170543
27. Winnicki M, Małachowska A, Piwowarczyk T, et al., 2016,
The bond strength of Al + Al O cermet coatings deposited by 38. Shukla AK, Nayan N, Murty SV, et al., 2013, Processing
3
2
low-pressure cold spraying. Arch Civil Mech Eng, 16: 743–752. of copper-carbon nanotube composites by vacuum hot
pressing technique. Mater Sci Eng A, 560: 365–371.
https://doi.org/10.1016/j.acme.2016.04.014
https://doi.org/10.1016/j.msea.2012.09.080
28. Koivuluoto H, Vuoristo P, 2010, Effect of powder type and
composition on structure and mechanical properties of Cu 39. Kang K, Bae G, Won J, et al., 2012, Mechanical property
+ Al O coatings prepared by using low-pressure cold spray enhancement of kinetic sprayed Al coatings reinforced by
3
2
process. J Therm Spray Technol, 19: 1081–1092. multi-walled carbon nanotubes. Acta Mater, 60: 5031–5039.
https://doi.org/10.1007/s11666-010-9491-2 https://doi.org/10.1016/j.actamat.2012.05.034
29. Phani PS, Vishnukanthan V, Sundararajan G, 2007, Effect of 40. Xie X, Chen C, Ji G, et al., 2019, A novel approach for
heat treatment on properties of cold sprayed nanocrystalline fabricating a CNT/AlSi composite with the self-aligned
copper alumina coatings. Acta Mater, 55: 4741–4751. nacre-like architecture by cold spraying. Nano Mater Sci,
1: 137–141.
https://doi.org/10.1016/j.actamat.2007.04.044
https://doi.org/10.1016/j.nanoms.2019.04.002
30. Winnicki M, Baszczuk A, Jasiorski M, et al., 2017, Corrosion
resistance of copper coatings deposited by cold spraying. 41. Cho S, Takagi K, Kwon H, et al., 2012, Multi-walled carbon
J Therm Spray Technol, 26: 1935–1946. nanotube-reinforced copper nanocomposite coating
fabricated by low-pressure cold spray process. Surf Coat
https://doi.org/10.1007/s11666-017-0646-2
Technol, 206: 3488–3494.
31. Chen W, Yu Y, Cheng J, et al., 2018, Microstructure, https://doi.org/10.1016/j.surfcoat.2012.02.021
mechanical properties and dry sliding wear behavior of
Cu-Al O -graphite solid-lubricating coatings deposited 42. Kim P, Shi L, Majumdar A, et al., 2001, Thermal transport
2
3
by low-pressure cold spraying. J Therm Spray Technol, measurements of individual multiwalled nanotubes. Phys
27: 1652–1663. Rev Lett, 87: 215502.
https://doi.org/10.1007/s11666-018-0773-4 https://doi.org/10.1103/PhysRevLett.87.215502
Volume 1 Issue 2 (2022) 18 https://doi.org/10.18063/msam.v1i2.12

