Page 75 - MSAM-1-2
P. 75
Materials Science in Additive Manufacturing Cold spray additive manufacturing of Cu-based materials
43. Cho S, Kikuchi K, Miyazaki T, et al., 2010, Multiwalled 55. Wu Y, Wang F, Cheng Y, et al., 1997, A study of the
carbon nanotubes as a contributing reinforcement phase for optimization mechanism of solid lubricant concentration in
the improvement of thermal conductivity in copper matrix NiMoS self-lubricating composite. Wear, 205: 64–70.
2
composites. Sci Mater, 63: 375–378.
https://doi.org/10.1016/S0043-1648(96)07299-7
https://doi.org/10.1016/j.scriptamat.2010.04.024
56. Miracle DB, 2005, Metal matrix composites from science to
44. Pialago EJ, Park C. Cold spray deposition characteristics of technological significance. Comp Sci Technol, 65: 2526–2540.
mechanically alloyed Cu-CNT composite powders. Appl https://doi.org/10.1016/j.compscitech.2005.05.027
Surf Sci, 308: 63–74.
57. Suresha S, Sridhara BK, 2010b, Wear characteristics of
https://doi.org/10.1016/J.APSUSC.2014.04.096
hybrid aluminium matrix composites reinforced with
45. Pialago EJ, Kwon OK, Park CW, 2015, Cold spray deposition graphite and silicon carbide particulates. Comp Sci Technol,
of mechanically alloyed ternary Cu-CNT-SiC composite 70: 1652–1659.
powders. Ceram Int, 41: 6764–6775.
https://doi.org/10.1016/j.compscitech.2010.06.013
https://doi.org/10.1016/j.ceramint.2015.01.123
58. Narayanasamy P, Selvakumar N, Balasundar P, 2015, Effect
46. Pialago EJ, Kwon OK, Kim MS, et al., 2015, Ternary of hybridizing MoS on the tribological behaviour of Mg-TiC
2
Cu-CNT-AlN composite coatings consolidated by cold composites. Trans Indian Inst Metals, 68:911–925.
spray deposition of mechanically alloyed powders. J Alloys https://doi.org/10.1007/s12666-015-0530-z
Comp, 650: 199–209.
59. Xu J, Liu W, Zhong M, 2006, Microstructure and dry sliding
https://doi.org/10.1016/j.jallcom.2015.08.007
wear behavior of MoS /TiC/Ni composite coatings prepared
2
47. Chen Q, Yu M, Cao K, et al., 2022, Thermal conductivity and by laser cladding. Surf Coat Technol, 200: 4227–4232.
wear resistance of cold sprayed Cu-ceramic phase composite https://doi.org/10.1016/j.surfcoat.2005.01.036
coating. Surf Coat Technol, 434: 128135.
60. Rajkumar K, Aravindan S, 2011, Tribological performance
https://doi.org/10.1016/j.surfcoat.2022.128135
of microwave sintered copper-TiC-graphite hybrid
48. Novoselov KS, Geim AK, Morozov SV, et al., 2004, Electric field composites. Tribol Int, 44: 347–358.
effect in atomically thin carbon films. Science, 306: 666–669.
https://doi.org/10.1016/j.triboint.2010.11.008
https://doi.org/10.1126/science.1102896
61. Suresha S, Sridhara BK, 2010a, Effect of addition of graphite
49. Warner JH, Schaffel F, Rummeli M, et al., 2012, Graphene: particulates on the wear behaviour in aluminium-silicon
Fundamentals and Emergent Applications. Elsevier, carbide-graphite composites. Mater Des, 31: 1804–1812.
Amsterdam, Netherlands, p61-125.
https://doi.org/10.1016/j.matdes.2009.11.015
50. Reina A, Jia X, Ho J, et al., 2009, Large area, few-layer 62. Kato H, Takama M, Iwai Y, et al., 2003, Wear and mechanical
graphene films on arbitrary substrates by chemical vapor properties of sintered copper-tin composites containing
deposition. Nano Lett, 9: 30–35.
graphite or molybdenum disulfide. Wear, 225: 573–578.
https://doi.org/10.1021/nl801827v
https://doi.org/10.1016/S0043-1648(03)00072-3
51. Kotov NA, 2006, Carbon sheet solutions. Nature, 442: 254–255.
63. Zhang Y, Epshteyn Y, Chromik RR, 2018, Dry sliding wear
https://doi.org/10.1038/442254a behaviour of cold-sprayed Cu-MoS and Cu-MoS -WC
2
2
composite coatings: The influence of WC. Tribol Int,
52. Yin S, Zhang Z, Ekoi EJ, et al., 2017, Novel cold spray for
fabricating graphene-reinforced metal matrix composites. 123: 296–306.
Mater Lett, 196: 172–175. https://doi.org/10.1016/j.triboint.2017.12.015
https://doi.org/10.1016/j.matlet.2017.03.018 64. Tu J, Rong W, Guo S, et al., 2003, Dry sliding wear behavior
of in situ Cu-TiB nanocomposites against medium carbon
53. Choi J, Okimura N, Yamada T, et al., 2021, Deposition 2
of graphene-copper composite film by cold spray from steel. Wear, 255: 832–835.
particles with graphene grown on copper particles. Diam https://doi.org/10.1016/S0043-1648(03)00115-7
Relat Mater, 116: 108384.
65. Valero ML, Corredor D, Camurri C, et al., 2005, Performance
https://doi.org/10.1016/j.diamond.2021.108384 and characterization of dispersion strengthened Cu-TiB 2
composite for electrical use. Mater Characterization,
54. Chromik R, Alidokht S, Shockley JM, et al., 2018,
Tribological coatings prepared by cold spray. In: Cold-Spray 55: 252–262.
Coatings. Springer, Berlin, p321–348. https://doi.org/10.1016/j.matchar.2005.04.006
https://doi.org/10.1007/978-3-319-67183-3_11 66. Kim JS, Kwon YS, Dudina DV, et al., 2005, Nanocomposites
Volume 1 Issue 2 (2022) 19 https://doi.org/10.18063/msam.v1i2.12

