Page 75 - MSAM-1-2
P. 75

Materials Science in Additive Manufacturing              Cold spray additive manufacturing of Cu-based materials


            43.  Cho  S,  Kikuchi  K,  Miyazaki  T,  et  al.,  2010,  Multiwalled   55.  Wu Y, Wang F, Cheng Y,  et al., 1997, A study of the
               carbon nanotubes as a contributing reinforcement phase for   optimization mechanism of solid lubricant concentration in
               the improvement of thermal conductivity in copper matrix   NiMoS  self-lubricating composite. Wear, 205: 64–70.
                                                                        2
               composites. Sci Mater, 63: 375–378.
                                                                  https://doi.org/10.1016/S0043-1648(96)07299-7
               https://doi.org/10.1016/j.scriptamat.2010.04.024
                                                               56.  Miracle DB, 2005, Metal matrix composites from science to
            44.  Pialago EJ, Park C. Cold spray deposition characteristics of   technological significance. Comp Sci Technol, 65: 2526–2540.
               mechanically alloyed Cu-CNT composite powders.  Appl      https://doi.org/10.1016/j.compscitech.2005.05.027
               Surf Sci, 308: 63–74.
                                                               57.  Suresha S, Sridhara BK, 2010b, Wear characteristics of
               https://doi.org/10.1016/J.APSUSC.2014.04.096
                                                                  hybrid aluminium matrix composites reinforced with
            45.  Pialago EJ, Kwon OK, Park CW, 2015, Cold spray deposition   graphite and silicon carbide particulates. Comp Sci Technol,
               of mechanically alloyed ternary Cu-CNT-SiC composite   70: 1652–1659.
               powders. Ceram Int, 41: 6764–6775.
                                                                  https://doi.org/10.1016/j.compscitech.2010.06.013
               https://doi.org/10.1016/j.ceramint.2015.01.123
                                                               58.  Narayanasamy P, Selvakumar N, Balasundar P, 2015, Effect
            46.  Pialago  EJ,  Kwon  OK,  Kim  MS,  et al.,  2015,  Ternary   of hybridizing MoS  on the tribological behaviour of Mg-TiC
                                                                                2
               Cu-CNT-AlN  composite  coatings  consolidated  by  cold   composites. Trans Indian Inst Metals, 68:911–925.
               spray deposition of mechanically alloyed powders. J Alloys      https://doi.org/10.1007/s12666-015-0530-z
               Comp, 650: 199–209.
                                                               59.  Xu J, Liu W, Zhong M, 2006, Microstructure and dry sliding
               https://doi.org/10.1016/j.jallcom.2015.08.007
                                                                  wear behavior of MoS /TiC/Ni composite coatings prepared
                                                                                  2
            47.  Chen Q, Yu M, Cao K, et al., 2022, Thermal conductivity and   by laser cladding. Surf Coat Technol, 200: 4227–4232.
               wear resistance of cold sprayed Cu-ceramic phase composite      https://doi.org/10.1016/j.surfcoat.2005.01.036
               coating. Surf Coat Technol, 434: 128135.
                                                               60.  Rajkumar K, Aravindan S, 2011, Tribological performance
               https://doi.org/10.1016/j.surfcoat.2022.128135
                                                                  of microwave sintered copper-TiC-graphite hybrid
            48.  Novoselov KS, Geim AK, Morozov SV, et al., 2004, Electric field   composites. Tribol Int, 44: 347–358.
               effect in atomically thin carbon films. Science, 306: 666–669.
                                                                  https://doi.org/10.1016/j.triboint.2010.11.008
               https://doi.org/10.1126/science.1102896
                                                               61.  Suresha S, Sridhara BK, 2010a, Effect of addition of graphite
            49.  Warner JH, Schaffel F, Rummeli M, et al., 2012, Graphene:   particulates on the wear behaviour in aluminium-silicon
               Fundamentals and Emergent Applications. Elsevier,   carbide-graphite composites. Mater Des, 31: 1804–1812.
               Amsterdam, Netherlands, p61-125.
                                                                  https://doi.org/10.1016/j.matdes.2009.11.015
            50.  Reina  A, Jia  X, Ho  J,  et al., 2009,  Large  area, few-layer   62.  Kato H, Takama M, Iwai Y, et al., 2003, Wear and mechanical
               graphene films on arbitrary substrates by chemical vapor   properties of sintered copper-tin composites containing
               deposition. Nano Lett, 9: 30–35.
                                                                  graphite or molybdenum disulfide. Wear, 225: 573–578.
               https://doi.org/10.1021/nl801827v
                                                                  https://doi.org/10.1016/S0043-1648(03)00072-3
            51.  Kotov NA, 2006, Carbon sheet solutions. Nature, 442: 254–255.
                                                               63.  Zhang Y, Epshteyn Y, Chromik RR, 2018, Dry sliding wear
               https://doi.org/10.1038/442254a                    behaviour of cold-sprayed Cu-MoS  and Cu-MoS -WC
                                                                                                         2
                                                                                              2
                                                                  composite coatings: The influence of WC.  Tribol Int,
            52.  Yin S, Zhang Z, Ekoi EJ, et al., 2017, Novel cold spray for
               fabricating graphene-reinforced metal matrix composites.   123: 296–306.
               Mater Lett, 196: 172–175.                          https://doi.org/10.1016/j.triboint.2017.12.015
               https://doi.org/10.1016/j.matlet.2017.03.018    64.  Tu J, Rong W, Guo S, et al., 2003, Dry sliding wear behavior
                                                                  of in situ Cu-TiB  nanocomposites against medium carbon
            53.  Choi J, Okimura N, Yamada T,  et al., 2021, Deposition        2
               of graphene-copper composite film by cold spray from   steel. Wear, 255: 832–835.
               particles with graphene grown on copper particles.  Diam      https://doi.org/10.1016/S0043-1648(03)00115-7
               Relat Mater, 116: 108384.
                                                               65.  Valero ML, Corredor D, Camurri C, et al., 2005, Performance
               https://doi.org/10.1016/j.diamond.2021.108384      and characterization of dispersion strengthened Cu-TiB   2
                                                                  composite for electrical use.  Mater Characterization,
            54.  Chromik R, Alidokht S, Shockley JM,  et al., 2018,
               Tribological coatings prepared by cold spray. In: Cold-Spray   55: 252–262.
               Coatings. Springer, Berlin, p321–348.              https://doi.org/10.1016/j.matchar.2005.04.006
               https://doi.org/10.1007/978-3-319-67183-3_11    66.  Kim JS, Kwon YS, Dudina DV, et al., 2005, Nanocomposites



            Volume 1 Issue 2 (2022)                         19                    https://doi.org/10.18063/msam.v1i2.12
   70   71   72   73   74   75   76   77   78   79   80