Page 101 - MSAM-2-3
P. 101

Materials Science in Additive Manufacturing                        Validation of a novel ML model for AM-PSP





                          A                 B                  C                 D





                          E                 F                  G                 H





            Figure 6. Representative SEM images of AM Ti-6Al-4V samples. (A) EB-PBF XY plane, (B) LPBFHT XY plane, (C) LPBFNHT XY plane, (D) DED XY
            plane, (E) EB-PBF XZ plane, (F) LPBFHT XZ plane, (G) LPBFNHT XZ plane, and (H) DED XZ plane.
            Abbreviations: DED: Directed energy deposition; EB-PBF: Electron beam-powder bed fusion; SEM: Scanning electron microscopy.
            Table 4. Crystal strain and residual stress

            Material            ε22          ε23           Ε33           σ22            σ23          σ23 (MPa)
                                                                        (MPa)          (MPa)
            L-PBF XY HT       0.002297      −0.00062     −0.00246       273.343        −74.137        −292.612
            L-PBF XZ HT       −0.00096      0.000059     −0.00189      −114.478         7.021         −224.865
            L-PBF XY NHT      −0.00134      −0.00018     −0.00047      −159.341        −20.825        −55.981
            L-PBF XZ NHT      −0.00179      0.000861     −0.00099      −213.367        102.459        −118.336
            EB-PBF XY         −0.00411      0.000716     0.000364      −488.495        85.204          43.275
            EB-PBF XZ         0.000951      −0.00105     −0.00083       113.169        −124.95         −99.31
            DED XY            −0.0027       −0.00119     0.000658      −321.300        −141.610        78.264
            DED XZ             0.00057      0.00364      −0.0055        67.830         433.160        −654.321
            Abbreviations: DED: Directed energy deposition; EB-PBF: Electron beam powder bed fusion; LPBF: Laser powder bed fusion.
            Table 5. Schmid factor and Taylor factor

            Material          Basal (SD)     Prismatic      Pyramidal       ε = 0.5       ε = 1         ε = 1.5
                              (Schmid)       (Schmid)       (Schmid)       (Taylor)      (Taylor)      (Taylor)
            LPBF XY HT         0.2902         0.3928         0.1151         2.1288        3.6471        5.1626
            LPBF XZ HT         0.2873         0.3982         0.1170         2.1139        3.7023        5.1586
            LPBF XY NHT        0.3005         0.3825         0.1148         2.1923        3.7147        5.1753
            LPBF XZ NHT        0.2795         0.4110         0.1194         2.1130        3.6349        5.0466
            EB-PBF XY          0.2994         0.3963         0.1167         2.0285        3.5247        4.8956
            EB-PBF XZ          0.2935         0.3851         0.1171         2.0923        3.5557        5.1285
            DED XY             0.2761         0.3491         0.1118         2.1296        3.9260        5.5082
            DED XZ             0.2800         0.4377         0.1334         2.0096        3.2098        4.5987
            Abbreviations: DED: Directed energy deposition; EB-PBF: Electron beam powder bed fusion; LPBF: Laser powder bed fusion.
            machining parameters. The prediction response is the specific   SEM microstructure functions (MP + SEM), and all features
            cutting energy. Root mean square error (RMSE) is used as the   (All). The rationale for this approach is to understand the
            evaluation metric to show the model’s accuracy. The XGBoost   individual and cumulative interaction effects of machining
            model and linear regression model are applied in this study.  conditions, grain size, grain density, grain orientation, and
                                                               residual stress on machining behavior.
              Five different feature combinations were designed:   The  first condition  in  this study  uses  14400  L-PBF
            Machining parameters only (MP), machining parameters and   data points as a training set, and the testing set is DED
            EBSD features (MP + EBSD), machining parameters and   data. During the training process in the XGBoost model,
            residual stress (MP + XRD), machining parameters and   the grid-search method was used for digging hyper-


            Volume 2 Issue 3 (2023)                         9                       https://doi.org/10.36922/msam.0999
   96   97   98   99   100   101   102   103   104   105   106