Page 44 - MSAM-3-1
P. 44

Materials Science in Additive Manufacturing                                   Carbon addition in IN738LC



            7.   Mostafaei A, Ghiaasiaan R, Ho IT,  et  al. Additive   of a 3   generation single crystal nickel-base superalloy.
                                                                       rd
               Manufacturing of Nickel-based superalloys: A state-of-the-  Mater Sci Eng A. 2015;639:732-738.
               art review on process-structure-defect-property relationship.      doi: 10.1016/j.msea.2015.05.039
               Prog Mater Sci. 2023;136:101108.
                                                               18.  Zhou W, Tian Y, Tan Q, et al. Effect of carbon content on the
               doi: 10.1016/j.pmatsci.2023.101108
                                                                  microstructure, tensile properties and cracking susceptibility
            8.   Han C, Fang Q, Shi Y, Tor SB, Chua CK, Zhou K. Recent   of IN738 superalloy processed by laser powder bed fusion.
               advances on high-entropy alloys for 3D printing. Adv Mater.   Addit Manuf. 2022;58:103016.
               2020;32(26):e1903855.
                                                                  doi: 10.1016/j.addma.2022.103016
               doi: 10.1002/adma.201903855
                                                               19.  Kontis P, Collins DM, Wilkinson AJ, Reed RC, Raabe D,
            9.   Zhao D, Liang H, Han C, et al. 3D printing of a titanium-  Gault B. Microstructural degradation of polycrystalline
               tantalum Gyroid scaffold with superb elastic admissible   superalloys  from oxidized carbides and  implications on
               strain, bioactivity and in-situ bone regeneration capability.   crack initiation. Scr Mater. 2018;147:59-63.
               Addit Manuf. 2021;47:102223.
                                                                  doi: 10.1016/j.scriptamat.2017.12.028
               doi: 10.1016/j.addma.2021.102223
                                                               20.  Yao J, Cahoon JR. Discussion of “hydrogen induced grain
            10.  DebRoy T, Wei HL, Zuback JS, et al. Additive manufacturing   boundary  fracture  in high purity nickel and  its alloys-
               of metallic components - process, structure and properties.   enhanced hydrogen diffusion along grain boundaries.  Scr
               Prog Mater Sci. 2018;92:112-224.                   Metall. 1988;22(11):1817-1820.
               doi: 10.1016/j.pmatsci.2017.10.001                 doi: 10.1016/S0036-9748(88)80291-6
            11.  Xu J, Lin X, Guo P,  et  al. The initiation and propagation   21.  Kontis P, Kostka A, Raabe D, Gault B. Influence of
               mechanism of the overlapping zone cracking during laser   composition and precipitation evolution on damage at grain
               solid forming of IN-738LC superalloy.  J  Alloys  Compd.   boundaries in a crept polycrystalline Ni-based superalloy.
               2018;749:859-870.                                  Acta Mater. 2019;166:158-167.
               doi: 10.1016/j.jallcom.2018.03.366                 doi: 10.1016/j.actamat.2018.12.039
            12.  Zhang X, Chen H, Xu L, Xu J, Ren X, Chen X. Cracking   22.  Furrer DU. Application of phase-field modeling to industrial
               mechanism and susceptibility of laser melting deposited   materials and manufacturing processes.  Curr Opin Solid
               Inconel 738 superalloy. Mater Des. 2019;183:108105.  State Mater Sci. 2011;15(3):134-140.
               doi: 10.1016/j.matdes.2019.108105                  doi: 10.1016/j.cossms.2011.03.001
            13.  Sun Z, Ma Y, Ponge D,  et al. Thermodynamics-guided   23.  Chen J, Xue L. Process-induced microstructural
               alloy and process design for additive manufacturing.  Nat   characteristics of laser consolidated IN-738 superalloy.
               Commun. 2022;13(1):4361.                           Mater Sci Eng A. 2010;527(27-28):7318-7328.
               doi: 10.1038/s41467-022-31969-y                    doi: 10.1016/j.msea.2010.08.003
            14.  Chen QZ, Jones N, Knowles DM. The microstructures of   24.  Messé OMDM, Muñoz-Moreno R, Illston T, Baker  S,
               base/modified RR2072 SX superalloys and their effects   Stone  HJ. Metastable carbides and their impact on
               on creep properties at elevated temperatures.  Acta Mater.   recrystallisation  in IN738LC  processed by selective  laser
               2002;50(5):1095-1112.                              melting. Addit Manuf. 2018;22:394-404.
               doi: 10.1016/S1359-6454(01)00410-4                 doi: 10.1016/j.addma.2018.05.030

            15.  Wei CN, Bor HY, Chang L. The effects of carbon content on   25.  Balikci E, Mirshams RA, Raman A. Tensile strengthening in
               the microstructure and elevated temperature tensile strength   the nickel-base superalloy IN738LC. J Mater Eng Perform.
               of a nickel-base superalloy. Mater Sci Eng A. 2010;527(16-  2000;9(3):324-329.
               17):3741-3747.
                                                                  doi: 10.1361/105994900770345999
               doi: 10.1016/j.msea.2010.03.053
                                                               26.  Balikci E, Raman A, Mirshams RA. Influence of various
            16.  Wei CN, Bor HY, Chang L. The influence of carbon addition   heat treatments on the microstructure of polycrystalline
               on carbide characteristics and mechanical properties of   IN738LC.  Metall Mater Trans A Phys Metall Mater Sci.
               CM-681LC superalloy using fine-grain process.  J  Alloys   1997;28(10):1993-2003.
               Compd. 2011;509(18):5708-5714.
                                                                  doi: 10.1007/s11661-997-0156-9
               doi: 10.1016/j.jallcom.2011.02.146
                                                               27.  Bettge D, Oesterle W, Ziebs J. Temperature dependence of
            17.  Li XW, Liu T, Wang L, Liu XG, Lou LH, Zhang J. Effect of   yield strength and elongation of the nickel-base superalloy
               carbon content on the microstructure and creep properties   IN 738 LC and the corresponding microstructural evolution.


            Volume 3 Issue 1 (2024)                         12                      https://doi.org/10.36922/msam.2264
   39   40   41   42   43   44   45   46   47   48   49