Page 45 - MSAM-3-1
P. 45

Materials Science in Additive Manufacturing                                   Carbon addition in IN738LC



               Zeitschrift fuer Met Res Adv Tech. 1995;86(3):190-197.  Melting. In: Proceedings of the International Conference on
                                                                  Progress in Additive Manufacturing; 2018. p. 470-5.
               doi: 10.1515/ijmr-1995-860309
            28.  Hariharan A, Lu L, Risse J, et al. Misorientation-dependent      doi: 10.25341/D4CS38
               solute enrichment at interfaces and its contribution to defect   37.  Zhang L, Li Y, Zhang S, Zhang Q. Selective laser melting
               formation mechanisms during laser additive manufacturing   of IN738 superalloy with a low Mn+Si content: Effect of
               of superalloys. Phys Rev Mater. 2019;3(12):123602.  energy input on characteristics of molten pool, metallurgical
                                                                  defects, microstructures and mechanical properties. Mater
               doi: 10.1103/PhysRevMaterials.3.123602
                                                                  Sci Eng A. 2021;826:141985.
            29.  Godec M, Zaefferer S, Podgornik B, Šinko M,
               Tchernychova   E. Quantitative multiscale correlative      doi: 10.1016/j.msea.2021.141985
               microstructure analysis of additive manufacturing of   38.  Xu J, Gruber H, Boyd R, Jiang S, Peng RL, Moverare JJ. On
               stainless  steel  316L  processed  by  selective  laser  melting.   the strengthening and embrittlement mechanisms of an
               Mater Charact. 2020;160:110074.                    additively manufactured Nickel-base superalloy. Materialia.
               doi: 10.1016/j.matchar.2019.110074                 2020;10:100657.
            30.  Starink MJ, Cama H, Thomson RC. MC carbides in the      doi: 10.1016/j.mtla.2020.100657
               Hf containing Ni based superalloy MarM002.  Scr Mater.   39.  Liu F, Kirchheim R. Nano-scale grain growth inhibited by
               1997;38(1):73-80.                                  reducing grain boundary energy through solute segregation.
               doi: 10.1016/S1359-6462(97)00409-0                 J Cryst Growth. 2004;264(1-3):385-391.
            31.  Kang SG, Gainov R, Heußen D, et al. Green laser powder      doi: 10.1016/j.jcrysgro.2003.12.021
               bed fusion based fabrication and rate-dependent mechanical   40.  Collins DM, Conduit BD, Stone HJ, Hardy MC, Conduit GJ,
               properties of copper lattices. Mater Des. 2023;231:112023.  Mitchell RJ. Grain growth behaviour during near-γ'
               doi: 10.1016/j.matdes.2023.112023                  solvus thermal exposures in a polycrystalline nickel-base
                                                                  superalloy. Acta Mater. 2013;61(9):3378-3391.
            32.  Sun Z, Tsai SP, Konijnenberg P, Wang JY, Zaefferer S.
               A large-volume 3D EBSD study on additively manufactured      doi: 10.1016/j.actamat.2013.02.028
               316L stainless steel. Scr Mater. 2024;238:115723.  41.  Platl J, Bodner S, Hofer C,  et al. Cracking mechanism in
               doi: 10.1016/j.scriptamat.2023.115723              a laser powder bed fused cold-work tool steel: The role
                                                                  of residual stresses, microstructure  and local  elemental
            33.  Wang L, Xie G, Zhang J, Lou LH. On the role of carbides   concentrations. Acta Mater. 2022;225:117570.
               during the recrystallization of a directionally solidified
               nickel-base superalloy. Scr Mater. 2006;55(5):457-460.     doi: 10.1016/j.actamat.2021.117570
               doi: 10.1016/j.scriptamat.2006.05.013           42.  Yang K, Wang Y, Guo M,  et al. Recent development of
                                                                  advanced precipitation-strengthened Cu alloys with
            34.  Zhou Y, Volek A. Effect of carbon additions on hot tearing of   high strength and conductivity: A review. Prog Mater Sci.
               a second generation nickel-base superalloy. Mater Sci Eng A.   2023;138:101141.
               2008;479(1-2):324-332.
                                                                  doi: 10.1016/j.pmatsci.2023.101141
               doi: 10.1016/j.msea.2007.06.076
                                                               43.  Xie D, Lv F, Yang Y,  et al. A  Review on distortion and
            35.  Tin S, Pollock TM. Stabilization of thermosolutal convective   residual stress in additive manufacturing. Chin J Mech Eng
               instabilities in Ni-based single-crystal superalloys: Carbide   Addit Manuf Front. 2022;1(3):100039.
               precipitation and Rayleigh numbers. Metall Mater Trans A
               Phys Metall Mater Sci. 2003;34A(9):1953-1967.      doi: 10.1016/j.cjmeam.2022.100039
               doi: 10.1007/s11661-003-0160-7                  44.  Risse J. Additive Manufacturing of Nickel-Base Superalloy
                                                                  IN738LC by Laser Powder Bed Fusion. Germany: Lehrstuhl
            36.  Sun Z, Tan X, Tor SB. Effects of Chamber Oxygen
               Concentration on Microstructure and Mechanical     für Lasertechnik; 2019.
               Properties of Stainless Steel 316L Parts by Selective Laser      doi: 10.18154/RWTH-2019-06822













            Volume 3 Issue 1 (2024)                         13                      https://doi.org/10.36922/msam.2264
   40   41   42   43   44   45   46   47   48   49   50