Page 126 - MSAM-3-2
P. 126

Materials Science in Additive Manufacturing                           Hybrid lattice structures design with AI



               Simulation, additive manufacturing, and experiment. Mater      doi: 10.1002/adom.201500436
               Horizons. 2018;5(5):939-945.
                                                               51.  Michielsen K, Stavenga DG. Gyroid cuticular structures in
               doi: 10.1039/C8MH00653A                            butterfly wing scales: Biological photonic crystals. J R Soc
                                                                  Interface. 2008;5(18):85-94.
            44.  Zheng X, Chen TT, Guo X, Samitsu S, Watanabe I.
               Controllable inverse design of auxetic metamaterials using      doi: 10.1098/rsif.2007.1065
               deep learning. Mater Des. 2021;211:110178.      52.  Lai  M,  Kulak  AN,  Law  D,  Zhang  Z,  Meldrum  FC,
               doi: 10.1016/j.matdes.2021.110178                  Riley DJ. Profiting from nature: Macroporous copper with
                                                                  superior mechanical properties.  Chem Commun  (Camb).
            45.  Sui F, Guo R, Zhang Z, Gu GX, Lin L. Deep reinforcement   2007;34:3547-3549.
               learning for digital materials design.  ACS Mater Lett.
               2021;3(10):1433-1439.                              doi: 10.1039/b707469g

               doi: 10.1021/acsmaterialslett.1c00390           53.  Brakke  KA.  The  surface  evolver.  Exp Math.  1992;1(2):
                                                                  141-165.
            46.  Wilt JK, Yang C, Gu GX. Accelerating auxetic
               metamaterial design with deep learning.  Adv Eng Mater.      doi: 10.1080/10586458.1992.10504253
               2020;22(5):1901266.                             54.  Dong G, Tang Y, Zhao YF. A 149 line homogenization code

               doi: 10.1002/adem.201901266                        for three-dimensional cellular materials written in matlab.
                                                                  J Eng Mater Technol. 2019;141(1):11.
            47.  Do Carmo MP. Differential Geometry of Curves and Surfaces.
               2  ed. New York: Springer Cham; 2016.              doi: 10.1115/1.4040555
                nd
            48.  Schoen AH. NASA Technical Note D-5541; 1970.  55.  Abadi M, Barham P, Chen J, et al. TensorFlow: A System for
                                                                  Large-Scale Machine Learning. In: 12  USENIX Symposium
                                                                                             th
            49.  Matsen MW, Bates FS. Origins of complex self-assembly in   on Operating Systems Design and Implementation. 2016.
               block copolymers. Macromolecules. 1996;29(23):7641-7644.  p. 265-283.
               doi: 10.1021/ma960744q                          56.  Yan H, Yu H, Zhu S, Wang Z, Zhang Y, Guo L. Nonlinear
            50.  Pouya C, Overvelde JT, Kolle M, et al. Characterization of   properties prediction and inverse design of a porous auxetic
               a mechanically tunable gyroid photonic crystal inspired by   metamaterial based on neural networks. Thin Walled Struct.
               the butterfly parides  sesostris.  Adv Opt Mater. 2015;4(1):   2024;197:111717.
               99-105.                                            doi: 10.1016/j.tws.2024.111717






































            Volume 3 Issue 2 (2024)                         13                             doi: 10.36922/msam.3430
   121   122   123   124   125   126   127   128