Page 100 - MSAM-3-4
P. 100
Materials Science in Additive Manufacturing Super-resolution method for L-PBF
for optical camera-based monitoring system of laser 2018. 294-310.
powder bed fusion process. Int J Comput Integr Manuf. doi: 10.1007/978-3-030-01234-2_18
2023;36(9):1281-1294.
33. Guo Y, Chen J, Wang J, et al. Closed-Loop Matters: Dual
doi: 10.1080/0951192X.2022.2104461
Regression Networks for Single Image Super-Resolution.
22. Guo S, Liu Y, Cui L, et al. In-situ capture of melt pool signature 2020 IEEE/CVF Conference on Computer Vision and Pattern
in high-speed laser cladding using fully convolutional Recognition (CVPR); 2020. p. 5406-5415.
network. Opt Lasers Eng. 2024;176:108113.
doi: 10.1109/CVPR42600.2020.00545
doi: 10.1016/j.optlaseng.2024.108113
34. Du G, Zhang P, Guo J, et al. DERE-Net: A dual-encoder
23. Fang Q, Tan Z, Li H, et al. In-situ capture of melt pool signature residual enhanced U-Net for muscle fiber segmentation
in selective laser melting using U-Net-based convolutional of H and E images. Biomed Signal Process Control.
neural network. J Manuf Process. 2021;68:347-355. 2024;98:106765.
doi: 10.1016/j.jmapro.2021.05.052 doi: 10.1016/j.bspc.2024.106765
24. Al-Mekhlafi H, Liu S. Single image super-resolution: 35. Ledig C, Theis L, Huszár F, et al. Photo-Realistic Single
A comprehensive review and recent insight. Front Comput Image Super-resolution Using a Generative Adversarial
Sci. 2023;18(1):181702. Network. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR); 2017. p. 105-114.
doi: 10.1007/s11704-023-2588-9
doi: 10.1109/CVPR.2017.19
25. Zhou H, Yan L, Zhang L, Zheng R, Yu F. Improved SINGLE
image Super-resolution Based on Edge Directed Interpolation. 36. Sun S, Peng X, Cao H. Accurate inspection and super-
Vol. 9686. Eighth International Symposium on Advanced resolution reconstruction for additive manufactured defects
Optical Manufacturing and Testing Technology based on stokes vector method and deep learning. Photonics.
(AOMATT2016). SPIE; 2016. 2024;11(9):874.
26. Huang D, Liu H. A short survey of image super resolution doi: 10.3390/photonics11090874
algorithms. J Comput Sci Technol Updates. 2015;2(2):19-29.
37. Zhu W, Li H, Shen S, et al. In-situ monitoring additive
27. Chauhan K, Patel SN, Kumhar M, et al. Deep learning-based manufacturing process with AI edge computing. Opt Laser
single-image super-resolution: A comprehensive review. Technol. 2024;171:110423.
IEEE Access. 2023;11:21811-21830.
doi: 10.1016/j.optlastec.2023.110423
doi: 10.1109/ACCESS.2023.3251396
38. Timofte R, Agustsson E, Gool LV, et al. NTIRE 2017
28. Dong C, Loy CC, He K, Tang X. Learning a deep convolutional Challenge on Single Image Super-resolution: Methods
network for image super-resolution. In: Computer Vision- and Results. In: 2017 IEEE Conference on Computer Vision
ECCV 2014. Germany: Springer; 2014. p. 184-199. and Pattern Recognition Workshops (CVPRW). 2017.
p. 1110-1121.
doi: 10.1007/978-3-319-10593-2_13
doi: 10.1109/CVPRW.2017.149
29. Dong C, Loy CC, Tang X. Accelerating the super-resolution
convolutional neural network. In: Computer Vision-ECCV 39. Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. ECA-Net: Efficient
2016. Germany: Springer; 2016. p. 391-407. channel attention for deep convolutional neural networks.
In: 2020 IEEE/CVF Conference on Computer Vision and
doi: 10.1007/978-3-319-46475-6_25
Pattern Recognition (CVPR); 2020. p. 11531-11539.
30. Kim J, Lee JK, Lee KM. Accurate Image Super-Resolution
Using Very Deep Convolutional Networks. 2016 IEEE doi: 10.1109/CVPR42600.2020.01155
Conference on Computer Vision and Pattern Recognition 40. Zhu Y, Geiß C, So E. Image super-resolution with dense-
(CVPR); 2016. p. 1646-1654. sampling residual channel-spatial attention networks for
multi-temporal remote sensing image classification. Int J
doi: 10.1109/CVPR.2016.182
Appl Earth Obs Geoinf. 2021;104:102543.
31. Lim B, Son S, Kim H, Nah S, Lee KM. Enhanced Deep
Residual Networks for Single Image Super-Resolution. doi: 10.1016/j.jag.2021.102543
In: 2017 IEEE Conference on Computer Vision and Pattern 41. Woo S, Park J, Lee JY, Kweon IS. CBAM: Convolutional
Recognition Workshops (CVPRW); 2017. p. 1132-1140. Block Attention Module. Computer Vision-ECCV
2018: 15 European Conference, Munich, Germany,
th
doi: 10.1109/CVPRW.2017.151
September 8-14, 2018, Proceedings, Part VII; 2018. p. 3-19.
32. Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y. Image Super-
resolution using very deep residual channel attention doi: 10.1007/978-3-030-01234-2_1
networks. Computer Vision-ECCV 2018. Germany: Springer; 42. Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks.
Volume 3 Issue 4 (2024) 13 doi: 10.36922/msam.5585

