Page 100 - MSAM-3-4
P. 100

Materials Science in Additive Manufacturing                             Super-resolution method for L-PBF



               for optical camera-based monitoring system of laser   2018. 294-310.
               powder bed fusion process.  Int J Comput Integr Manuf.      doi: 10.1007/978-3-030-01234-2_18
               2023;36(9):1281-1294.
                                                               33.  Guo Y, Chen J, Wang J, et al. Closed-Loop Matters: Dual
               doi: 10.1080/0951192X.2022.2104461
                                                                  Regression Networks for Single Image Super-Resolution.
            22.  Guo S, Liu Y, Cui L, et al. In-situ capture of melt pool signature   2020 IEEE/CVF Conference on Computer Vision and Pattern
               in high-speed laser cladding using fully convolutional   Recognition (CVPR); 2020. p. 5406-5415.
               network. Opt Lasers Eng. 2024;176:108113.
                                                                  doi: 10.1109/CVPR42600.2020.00545
               doi: 10.1016/j.optlaseng.2024.108113
                                                               34.  Du G,  Zhang P, Guo  J,  et al. DERE-Net: A  dual-encoder
            23.  Fang Q, Tan Z, Li H, et al. In-situ capture of melt pool signature   residual enhanced U-Net for muscle fiber segmentation
               in selective laser melting using U-Net-based convolutional   of H  and  E images.  Biomed Signal Process Control.
               neural network. J Manuf Process. 2021;68:347-355.  2024;98:106765.
               doi: 10.1016/j.jmapro.2021.05.052                  doi: 10.1016/j.bspc.2024.106765
            24.  Al-Mekhlafi H, Liu S. Single image super-resolution:   35.  Ledig C, Theis L, Huszár F,  et al. Photo-Realistic Single
               A comprehensive review and recent insight. Front Comput   Image Super-resolution Using a Generative Adversarial
               Sci. 2023;18(1):181702.                            Network. In: 2017 IEEE Conference on Computer Vision and
                                                                  Pattern Recognition (CVPR); 2017. p. 105-114.
               doi: 10.1007/s11704-023-2588-9
                                                                  doi: 10.1109/CVPR.2017.19
            25.  Zhou H, Yan L, Zhang L, Zheng R, Yu F. Improved SINGLE
               image Super-resolution Based on Edge Directed Interpolation.   36.  Sun  S,  Peng  X,  Cao  H.  Accurate  inspection  and  super-
               Vol.  9686. Eighth International Symposium on Advanced   resolution reconstruction for additive manufactured defects
               Optical  Manufacturing  and  Testing  Technology   based on stokes vector method and deep learning. Photonics.
               (AOMATT2016). SPIE; 2016.                          2024;11(9):874.
            26.  Huang D, Liu H. A short survey of image super resolution      doi: 10.3390/photonics11090874
               algorithms. J Comput Sci Technol Updates. 2015;2(2):19-29.
                                                               37.  Zhu W, Li H, Shen S,  et al.  In-situ monitoring additive
            27.  Chauhan K, Patel SN, Kumhar M, et al. Deep learning-based   manufacturing process with AI edge computing. Opt Laser
               single-image super-resolution: A  comprehensive review.   Technol. 2024;171:110423.
               IEEE Access. 2023;11:21811-21830.
                                                                  doi: 10.1016/j.optlastec.2023.110423
               doi: 10.1109/ACCESS.2023.3251396
                                                               38.  Timofte R, Agustsson E, Gool LV,  et al. NTIRE 2017
            28.  Dong C, Loy CC, He K, Tang X. Learning a deep convolutional   Challenge on Single Image Super-resolution: Methods
               network for image super-resolution. In: Computer Vision-  and Results. In: 2017 IEEE Conference on Computer Vision
               ECCV 2014. Germany: Springer; 2014. p. 184-199.    and Pattern Recognition Workshops (CVPRW). 2017.
                                                                  p. 1110-1121.
               doi: 10.1007/978-3-319-10593-2_13
                                                                  doi: 10.1109/CVPRW.2017.149
            29.  Dong C, Loy CC, Tang X. Accelerating the super-resolution
               convolutional neural network. In: Computer Vision-ECCV   39.  Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. ECA-Net: Efficient
               2016. Germany: Springer; 2016. p. 391-407.         channel attention for deep convolutional neural networks.
                                                                  In:  2020  IEEE/CVF  Conference  on  Computer  Vision  and
               doi: 10.1007/978-3-319-46475-6_25
                                                                  Pattern Recognition (CVPR); 2020. p. 11531-11539.
            30.  Kim J, Lee JK, Lee KM. Accurate Image Super-Resolution
               Using Very Deep Convolutional Networks.  2016 IEEE      doi: 10.1109/CVPR42600.2020.01155
               Conference on Computer Vision and Pattern Recognition   40.  Zhu Y, Geiß C, So E. Image super-resolution with dense-
               (CVPR); 2016. p. 1646-1654.                        sampling residual channel-spatial attention networks for
                                                                  multi-temporal remote sensing image  classification.  Int  J
               doi: 10.1109/CVPR.2016.182
                                                                  Appl Earth Obs Geoinf. 2021;104:102543.
            31.  Lim B, Son S, Kim H, Nah S, Lee KM. Enhanced Deep
               Residual Networks for Single Image Super-Resolution.      doi: 10.1016/j.jag.2021.102543
               In: 2017 IEEE Conference on Computer Vision and Pattern   41.  Woo S, Park J, Lee JY, Kweon IS. CBAM: Convolutional
               Recognition Workshops (CVPRW); 2017. p. 1132-1140.  Block  Attention  Module.  Computer  Vision-ECCV
                                                                  2018:  15   European Conference, Munich, Germany,
                                                                          th
               doi: 10.1109/CVPRW.2017.151
                                                                  September 8-14, 2018, Proceedings, Part VII; 2018. p. 3-19.
            32.  Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y. Image Super-
               resolution using very deep residual channel attention      doi: 10.1007/978-3-030-01234-2_1
               networks. Computer Vision-ECCV 2018. Germany: Springer;   42.  Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks.

            Volume 3 Issue 4 (2024)                         13                             doi: 10.36922/msam.5585
   95   96   97   98   99   100   101   102   103   104   105