Page 99 - MSAM-3-4
P. 99

Materials Science in Additive Manufacturing                             Super-resolution method for L-PBF



            References                                            doi: 10.1016/j.ceramint.2022.04.033

            1.   Liu Y, Sing SL. A  review of advances in additive   11.  Li Y, Chen Z, Lin L, Liu S, Wang H, Zhang J. Effect of
               manufacturing and the integration of high-performance   pores on the stress field of high-frequency vibration of
               polymers, alloys, and  their composites.  Mat Sci Addit   TC17 specimen manufactured by laser additive. Int J Fract.
               Manuf. 2023;2(3):1587.                             2022;235(1):117-127.
               doi: 10.36922/msam.1587                            doi: 10.1007/s10704-021-00613-z
            2.   Sehhat MH, Sutton AT, Hung CH,  et al. Plasma   12.  Ince FD, Karna S, Zhang T, et al. An experimental process
               spheroidization of gas-atomized 304L stainless steel powder   parameter study on the identification of defects in additively
               for laser powder bed fusion process. Mat Sci Addit Manuf.   fabricated  Al6061  with  laser  powder  bed  fusion.  Mat Sci
               2022;1(1):1.                                       Addit Manuf. 2024;3(3):3652.
               doi: 10.18063/msam.v1i1.1                          doi: 10.36922/msam.3652
                                                               13.  Brion DAJ, Shen M, Pattinson SW. Automated recognition
            3.   Fé-Perdomo IL, Ramos-Grez JA, Beruvides G, Mujica RA.
               Selective laser melting: Lessons from medical devices   and correction of warp deformation in extrusion additive
               industry and other applications.  Rapid Prototyp J.   manufacturing. Addit Manuf. 2022;56:102838.
               2021;27(10):1801-1830.                             doi: 10.1016/j.addma.2022.102838
               doi: 10.1108/RPJ-07-2020-0151                   14.  Xiao Y, Wang X, Yang W, et al. Data-driven prediction of
                                                                  future melt pool from built parts during metal additive
            4.   Lin X, Zhu K, Fuh JYH, Duan X. Metal-based additive   manufacturing. Addit Manuf. 2024;93:104438.
               manufacturing condition monitoring methods: From
               measurement to control. ISA Trans. 2022;120:147-166.     doi: 10.1016/j.addma.2024.104438
               doi: 10.1016/j.isatra.2021.03.001               15.  McCann R, Obeidi MA, Hughes C,  et al.  In-situ sensing,
                                                                  process  monitoring  and  machine  control  in  laser  powder
            5.   Wang Q, Lin X, Duan X, Yan R, Fuh JYH, Zhu K. Gaussian
               process classification of melt pool motion for laser powder   bed fusion: A review. Addit Manuf. 2021;45:102058.
               bed  fusion process monitoring.  Mech Syst Signal Proc.      doi: 10.1016/j.addma.2021.102058
               2023;198:110440.                                16.  Taherkhani K, Ero O, Liravi F, Toorandaz S, Toyserkani E.
               doi: 10.1016/j.ymssp.2023.110440                   On the application of  in-situ monitoring systems and
                                                                  machine  learning  algorithms  for  developing  quality
            6.   Wang J, Zhu R, Liu Y, Zhang L. Understanding melt pool   assurance platforms in laser powder bed fusion: A review.
               characteristics in laser powder bed fusion: An overview of   J Manuf Process. 2023;99:848-897.
               single-and multi-track melt pools for process optimization.
               Adv Powder Mater. 2023;2(4):100137.                doi: 10.1016/j.jmapro.2023.05.048
               doi: 10.1016/j.apmate.2023.100137               17.  Jiao W, Wang Q, Cheng Y, Zhang Y. End-to-end prediction
                                                                  of weld penetration: A deep learning and transfer learning
            7.   Tao Z, Thanki A, Goossens L, Witvrouw A, Vrancken B,   based method. J Manuf Process. 2021;63:191-197.
               Dewulf W. Photodiode-based porosity prediction in laser
               powder bed fusion considering inter-hatch and inter-layer      doi: 10.1016/j.jmapro.2020.01.044
               effects. J Mater Process Technol. 2024;332:118539.  18.  Chen Z, Chen J, Feng Z. Welding penetration
               doi: 10.1016/j.jmatprotec.2024.118539              prediction with passive vision system.  J  Manuf Process.
                                                                  2018;36:224-230.
            8.   Yang W, Qiu Y, Liu W, Qiu X, Bai Q. Defect prediction in
               laser powder bed fusion with the combination of simulated      doi: 10.1016/j.jmapro.2018.10.009
               melt pool images and thermal images.  J  Manuf  Process.   19.  Sampson R, Lancaster R, Sutcliffe M, Carswell D, Hauser C,
               2023;106:214-222.                                  Barras J. An improved methodology of melt pool monitoring
               doi: 10.1016/j.jmapro.2023.10.006                  of direct energy deposition processes.  Opt Laser Technol.
                                                                  2020;127:106194.
            9.   Mao Y, Lin X, Zhu K. Selective laser melting monitoring
               based on the plume and its motion features.  IEEE Trans      doi: 10.1016/j.optlastec.2020.106194
               Instrum Meas. 2024;73:1-14.                     20.  Barua S, Sparks T, Liou F. Development of low‐cost imaging
               doi: 10.1109/TIM.2024.3432145                      system for laser metal deposition processes. Rapid Prototyp
                                                                  J. 2011;17(3):203-210.
            10.  Jin M, Wu X, Shao W, et al. Preparation and microstructural
               evolution of spherical B-modified MoSi2 powders      doi: 10.1108/13552541111124789
               by induction plasma spheroidization.  Ceram Int.   21.  Zhang  S,  Fu  T,  Jahn  A,  Collet  A,  Schleifenbaum  JH.
               2022;48(14):20639-20647.                           Towards  deep-learning-based  image  enhancement


            Volume 3 Issue 4 (2024)                         12                             doi: 10.36922/msam.5585
   94   95   96   97   98   99   100   101   102   103   104